Relative dose-response from solid-state and gel dosimeters through Monte Carlo simulations

Authors

  • Ney Souza Neto Federal University of Health Sciences of Porto Alegre, UFCSPA, 90050-170, Porto Alegre, RS, Brazil.
  • Ana Quevedo University Oeste Paulista , UNOESTE, Department Health Science, 17213-700, Jaú, SP, Brazil
  • Mirko Salomón Alva-Sánchez Federal University of Health Sciences of Porto Alegre
  • Thatiane Pianoschi Departament of Exact Science and Applied Social - Federal University of Health Sciences of Porto Alegre - UFSCPA

DOI:

https://doi.org/10.15392/bjrs.v10i3.2049

Keywords:

Glass dosimeter, luminescence dosimeters, Gel dosimeters, Monte Carlo codes

Abstract

The present work compared the relative absorbed dose of some dosimetric materials, for energies of 250 kV and 6 MV, using PENELOPE and MNCPX codes. The composition of each material GD-301, TLD-100, MAGIC, and MAGAT were simulated and disposed of in a phantom filled with water following reference conditions recommended by the TRS-398 protocol. Percentage depth dose was used as a parameter of comparison. Since the obtained results with both codes were found a maximum difference of up to 2 % when compared the water material with experimental data before 6cm were found to a maximum difference of up to 2.2%  for 6 MV and 5.5 % for 250 kV.  Ratios between simulated PPD and experimental PDD values showed a maximum difference in the build-up region, for 6 MV, due to highsensitivityive from the incident fluency in the simulated and experimental conditions. The ratios for 250 kV showed significant differences from the simulated solid-state rather than gel dosimeters, due to its low energy, depth angular dependence from the solid-state dosimeter, as corroborating by literature. Even the differences showed for both codes, especially for lower energy, due to cross-the section database that implied the interaction probability for each Monte Carlo code, this method has been widely used to model radiation transport in several applications in medical physics, especially in dosimetry.   

Downloads

Download data is not yet available.

Author Biography

  • Mirko Salomón Alva-Sánchez, Federal University of Health Sciences of Porto Alegre
    Department of Exact Science  and Applied Social 

References

CHAND, S.; MEHRA, R., CHOPRA, V. Recent developments in phosphate materials for their thermoluminescence dosimeter (TLD) applications. Luminescence, v. 36(8), p. 1808–1817, 2021. DOI: https://doi.org/10.1002/bio.3960

GUERIN, G, CHRISTOPHE, C, PHILIPPE, A, MURRAY, AS, THOMSEN, KJ, TRIBOLO, C, ET AL. Absorbed dose, equivalent dose, measured dose rates, and implications for OSL age estimates: Introducing the Average Dose Model. Quat Geochronol, v. 41, p. 163–173, 2017. DOI: https://doi.org/10.1016/j.quageo.2017.04.002

NEZHAD, ZA. A review study on the application of gel dosimeters in low energy radiation dosimetry. Appl Radiat Isot, v. 179, p. 110015, 2019. DOI: https://doi.org/10.1016/j.apradiso.2021.110015

PODGORSAK, E.B. Radiation Physics for Medical Physicists. 3rd ed. Springer, 2016. DOI: https://doi.org/10.1007/978-3-319-25382-4

OLIVEIRA, LC, MILLIKEN, ED, YUKIHARA, EG. Development and characterization of MgO: Nd,Li synthesized by solution combustion synthesis for 2D optically stimulated luminescence dosimetry. J Lumin, v. 133, p. 211–216, 2013. DOI: https://doi.org/10.1016/j.jlumin.2011.10.032

BENALI, A-H, MEDKOUR ISHAK-BOUSHAK, G, NOURREDDINE, A, ALLAB, M. Comparison of RPL GD-301 and TLD-100 detectors responses by Monte Carlo simulation. EPJ Web of Conferences, v. 100, p. 02001, 2015. DOI: https://doi.org/10.1051/epjconf/201510002001

PIESCHI, E, BURGKHARDT, B, FISCHER, M, RÖBER, HG, UGI, S. Properties of Radiophotoluminescent Glass Dosemeter Systems Using Pulsed Laser UV Excitation. Radiation Protection Dosimetry, v.17, p. 293–297, 1986. DOI: https://doi.org/10.1093/rpd/17.1-4.293

YAMAMOTO, T. RPL Dosimetry: Principles and Applications. AIP Conference Proceedings, 2011. p. 217–230. DOI: https://doi.org/10.1063/1.3576169

RAH, J-E, OH, DH, SHIN, D, KIM, D-H, JI, YH, KIM, JW, ET AL. Dosimetric evaluation of a glass dosimeter for proton beam measurements. Appl Radiat Isot, v. 70, p. 1616–1623, 2012. DOI: https://doi.org/10.1016/j.apradiso.2012.04.007

WESOLOWSKA, PE, COLE, A, SANTOS, T, BOKULIC, T, KAZANTSEV, P, IZEWSKA, J. Characterization of three solid states dosimetry systems for use in high energy photon dosimetry audits in radiotherapy. Radiat Meas, v. 106. p. 556–562, 2017. DOI: https://doi.org/10.1016/j.radmeas.2017.04.017

GHONEAM, SM, MAHMOUD, KR, DIAB, HM, EL-SERSY, A. Studying the dose level for different X-ray energy conventional radiography by TLD-100. Appl Radiat Isot, v. 181, p. 110066, 2022. DOI: https://doi.org/10.1016/j.apradiso.2021.110066

HOROWITZ, YS, MOSCOVITCH, M. Highlights and pitfalls of 20 years of application of computerized glow curve analysis to thermoluminescence research and dosimetry. Radiat Prot Dosim, v. 153, p. 1–22, 2013. DOI: https://doi.org/10.1093/rpd/ncs242

MOSCOVITCH, M, BENEVIDES, L, ROMANYUKHA, A, HULL, F, DUFFY, M, VOSS, S, ET AL. The applicability of the PTTL dose re-analysis method to the Harshaw LiF:Mg,Cu,P material. Radiat Prot Dosim, v. 144, p. 161–164. 2011. DOI: https://doi.org/10.1093/rpd/ncq570

BALDOCK, C, DE DEENE, Y, DORAN, S, IBBOTT, G, JIRASEK, A, LEPAGE, M, ET AL. Polymer gel dosimetry. Phys Med Biol, v. 55, p, R1–63, 2010. DOI: https://doi.org/10.1088/0031-9155/55/5/R01

FARHOOD, B, GERAILY, G, ABTAHI, S. M. M. A systematic review of clinical applications of polymer gel dosimeters in radiotherapy. Appl Radiat Isot, v. 143, p. 47–59, 2019. DOI: https://doi.org/10.1016/j.apradiso.2018.08.018

ALVA, M, MARQUES, T, SCHWARCKE, M, RODRIGUES, LN, BAFFA, O, NICOLUCCI, P. A Water-equivalent calibration of 192Ir HDR Brachytherapy source using MAGIC polymer gel. IFMBE Proceedings, v. 25, p. 248–251, 2009. DOI: https://doi.org/10.1007/978-3-642-03902-7_70

ALVA, M, PIANOSCHI, T, MARQUES, T, SANTANNA, MM, BAFFA, O, NICOLUCCI, P. Monte Carlo Simulation of MAGIC- f gel for Radiotherapy using PENELOPE. J Phys Conf Ser, v. 250, p. 012067, 2010. DOI: https://doi.org/10.1088/1742-6596/250/1/012067

MARIOTTI, V, GAYOL, A, PIANOSCHI, T, MATTEA, F, VEDELAGO, J, PEREZ, ET AL. Radiotherapy dosimetry parameters intercomparison among eight gel dosimeters by Monte Carlo simulation. Radiat Meas, v. 190, p. 109782, 2022. DOI: https://doi.org/10.1016/j.radphyschem.2021.109782

QUEVEDO, A, LUO, G, GALHARDO, E, PRICE, M, NICOLUCCI, P, GORE, JC, ET AL. Polymer gel dosimetry by Nuclear Overhauser Enhancement (NOE) magnetic resonance imaging. Phys Med Biol, v. 63, p. 5NT03, 2018. DOI: https://doi.org/10.1088/1361-6560/aad1bd

HURLEY, C, VENNING, A, BALDOCK, C. A study of a normoxic polymer gel dosimeter comprising methacrylic acid, gelatin and tetrakis (hydroxymethyl) phosphonium chloride (MAGAT). Appl Radiat Isot, v. 63, p. 443–456, 2005. DOI: https://doi.org/10.1016/j.apradiso.2005.03.014

FONG, P. M., KEIL, D. C., DOES, M. D., GORE, J. C. Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys Med Biol, v. 46, p. 3105–3113, 2001. DOI: https://doi.org/10.1088/0031-9155/46/12/303

DE DEENE, Y, HURLEY, C, VENNING, A, VERGOTE, K, MATHER, M, HEALY, B. J, ET AL. A basic study of some normoxic polymer gel dosimeters. Phys Med Biol, v. 47, p. 3441–3463, 2002. DOI: https://doi.org/10.1088/0031-9155/47/19/301

GUSTAVSSON, H, BÄCK, SAJ, MEDIN, J, GRUSELL, E, OLSSON, LE. Linear energy transfer dependence of a normoxic polymer gel dosimeter investigated using proton beam absorbed dose measurements. Phys Med Biol, 49, p. 3847–3855, 2004. DOI: https://doi.org/10.1088/0031-9155/49/17/002

FERNANDES, JP, PASTORELLO, BF, ARAUJO, DB, BAFFA, O. Formaldehyde increases MAGIC gel dosimeter melting point and sensitivity. Phys Med Biol, v. 53, p. N53–N58, 2008. DOI: https://doi.org/10.1088/0031-9155/53/4/N04

OSMAN, H, GÜMÜS, H. Stopping power and CSDA range calculations of electrons and positrons over the 20 eV–1 GeV energy range in some water equivalent polymer gel dosimeters. Appl Radiat Isot, v. 179, p. 110024, 2022. DOI: https://doi.org/10.1016/j.apradiso.2021.110024

BRAHIMIMOUSSA, S, BENAMAR, MEA, LOUNISMOKRANI, Z. Characterization of the chemical and structural modifications induced by gamma rays on the MAGIC polymer gel. Rad Phys Chem, v. 166, p. 108451, 2020. DOI: https://doi.org/10.1016/j.radphyschem.2019.108451

MUSTAQIM, AS, YAHAYA< NZ, RAZAK, NNA, ZIN, H. The dose enhancement of MAGAT gel dosimeter doped with zinc oxide at 6 MV photon beam. Rad Phys Chem, v. 172 p. 108739, 2020. DOI: https://doi.org/10.1016/j.radphyschem.2020.108739

RAZAK, NN, RAHMAN, AA, KANDAIYA, S, MUSTAFA, IS, MAHNOUD, AA, YAHAYA, NZ. Optimisation of the MAGAT gel dosimeter compositions. Int J Radiat Res, v. 14, p. 305–311, 2016. DOI: https://doi.org/10.18869/acadpub.ijrr.14.4.305

RESENDE, TD, LIZAR, JC, DOS SANTOS, FM, BORGES, LF, PAVONI, JF. Study of the formulation optimization and reusability of a MAGAT gel dosimeter. Physica Medica, v. 63, p. 05–11, 2019. DOI: https://doi.org/10.1016/j.ejmp.2019.05.018

NATANASABAPATHI, G, WARMINGTON, L, WATANABE, Y. Evaluation of two calibration methods for MRI-based polymer gel dosimetry. Appl Radiat Isot, v. 174, p. 109754, 2021. DOI: https://doi.org/10.1016/j.apradiso.2021.109754

BALCAZA, VG, CAMP, A, BADAL, A, ANDERSSON, M, ALMEN, A, GINJAUME, M, ET AL. Fast Monte Carlo codes for occupational dosimetry in interventional radiology. Physica Medica, v. 85, p. 166–174, 2021. DOI: https://doi.org/10.1016/j.ejmp.2021.05.012

BAGHANI, HR, ROBATJAZI, M. Theoretical and Monte Carlo-based Kerma factor evaluation for various thermoluminescence (TL) dosimetry materials over a wide range of photon energies. Eur Phys J Plus, v. 136, 2021. DOI: https://doi.org/10.1140/epjp/s13360-021-02135-y

ALVAREZ, DSA, WATSON, PGF, POPOVIC, M, HENG, VJ, EVANS, MDC, SEUNTJENS, J. Monte Carlo calculation of the TG-43 dosimetry parameters for the INTRABEAM source with spherical applicators. Phys Med Biol, v. 66, p. 215017, 2021. DOI: https://doi.org/10.1088/1361-6560/ac309f

MASSERA, RT, THOMSON, RM, TOMAL, A. Technical note: MC-GPU breast dosimetry validations with other Monte Carlo codes and phase space file implementation. Med Phys, v. 49, p. 244–253, 2022. DOI: https://doi.org/10.1002/mp.15342

ANDREO, P. Monte Carlo simulations in radiotherapy dosimetry. Radiat Oncol.;13, 121, 2018. DOI: https://doi.org/10.1186/s13014-018-1065-3

SARRUT, D, ETXEBESTE, A, MUNOZ, E, KRAN, N, LETANG, JM. Artificial Intelligence for Monte Carlo Simulation in Medical Physics. Front Phys, v. 9, p. 738112, 2021. DOI: https://doi.org/10.3389/fphy.2021.738112

KOIVUNORO, H, SIISKONEN, T, KOTILUOTO, P, AUTERINEN, I, HIPPELAINEN, E, SAVOLAINEN, S. Accuracy of the electron transport in MCNP5 and its suitability for ionization chamber response simulations: A comparison with the EGSNRC and PENELOPE codes. Med Phys, v. 39, p. 1335–1344, 2012. DOI: https://doi.org/10.1118/1.3685446

KHAN, H, KORESHI, ZU, AZIZ, U, SHEIKH, SR, AHMAD, SA. Energy deposition and dose enhancement using Monte Carlo derivative sampling: applications in brachytherapy. J Natl Sci Found, v. 49, p. 493–501, 2021. DOI: https://doi.org/10.4038/jnsfsr.v49i4.9476

YANI, S, TURSINAH, R, RHANI, MF, HARYANTO, F, ARIF, I. Comparison between EGSnrc and MCNPX for X-ray target in 6 MV photon beam. Journal of Physics Conference Series, v. 1127, p. 012014, 2019. DOI: https://doi.org/10.1088/1742-6596/1127/1/012014

ARCHAMBAULT, JP. Monte Carlo calculations of electrons impinging on a copper target: A comparison of EGSnrc, Geant4 and MCNP5. Appl Radiat Isot, v. 132, p. 129–134, 2018. DOI: https://doi.org/10.1016/j.apradiso.2017.11.023

PARTANEN, M, OJALA, J, NIEMELA, J, BJORKQVIST, M, KEYRILAINEN, J, KAPANEN, M. Comparison of two Monte Carlo-based codes for small-field dose calculations in external beam radiotherapy. Acta Oncol, v. 56, p. 891–893, 2017. DOI: https://doi.org/10.1080/0284186X.2017.1292048

SEDLACKOVA, K, SAGATOVA, A, ZAT’KO, B, NECAS, V, SOLAR, M, GRANJA, C. MCNPX simulations of the silicon carbide semiconductor detector response to fast neutrons from D-T nuclear reaction. In: Proceedings of the 2015 International Conference on Applications of Nuclear Techniques (CRETE15). Crete, Greece: Erickson, A; Hamm, M; Rahnema, F; Zhang, D, International Journal of Modern Physics-Conference Series; vol. 44, 2016. DOI: https://doi.org/10.1142/S201019451660226X

MAROUFKHANI, F, ABTAHI, SMM, KAKAVAND, T. Assessment of secondary particles in breast proton therapy by Monte Carlo simulation code using MCNPX. Int J Radiat Res, v. 19, p. 23–29, 2021. DOI: https://doi.org/10.29252/ijrr.19.1.23

OLIVEIRA, JRB, MORALLES, M, FLECHAS, D, CARBONE, D, CAVALLARO, M, TORRESI, D, ET AL. First comparison of GEANT4 hadrontherapy physics model with experimental data for a NUMEN project reaction case. Eur Phys J, v. 56, p. 153, 2020. DOI: https://doi.org/10.1140/epja/s10050-020-00152-6

DE NAPOLI, M, ROMANO, F, D’URSO, D, LICCIARDELLO, T, AGODI, C, CANDIANO, G, ET AL. Nuclear reaction measurements on tissue-equivalent materials and GEANT4 Monte Carlo simulations for hadrontherapy. Phys Med Biol, v. 59, p. 7643–7652, 2014; DOI: https://doi.org/10.1088/0031-9155/59/24/7643

DISCHER, M, EAKINS, J, WODA, C, TANNER, R. Translation of the absorbed dose in the mobile phone to organ doses of an ICRP voxel phantom using MCNPX simulation of an Ir-192 point source. Rad Meas, v. 146, p. 106603, 2021. DOI: https://doi.org/10.1016/j.radmeas.2021.106603

DE SAINT-HUBERT, M, TYMINSKA, K, STOLARCZYK, L, BRKIC, H. Fetus dose calculation during proton therapy of pregnant phantoms using MCNPX and MCNP6.2 codes. Rad Meas, v. 149, p. 106665, 2021. DOI: https://doi.org/10.1016/j.radmeas.2021.106665

PARK, E. T, KIM, J. H, KIM, C. S, KANG, S. S. Characteristic evaluation of photoneutron in radiotherapy room using MCNPX. J Instrum, v. 10, p. P08007, 2015. DOI: https://doi.org/10.1088/1748-0221/10/08/P08007

ARCE, P, LAGARES, J. I, AZCONA, J. D, AGUILAR-REDONDO, P. B. A proposal for a Geant4 physics list for radiotherapy optimized in physics performance and CPU time. Nucl Instrum Methods Phys Res A: Accel Spectrom Detec Assoc Equip, v. 964, p. 163755, 2020. DOI: https://doi.org/10.1016/j.nima.2020.163755

SYAHIR, M. K, FAHMI, M. R, HASHIKIN, N. A. A. Dosimetric comparison between different radiotherapy protocols for prostate cancer using Geant4 Monte Carlo simulation. J Phys Conf Ser, v. 1497, p. 012018, 2020. DOI: https://doi.org/10.1088/1742-6596/1497/1/012018

VERBEEK, N, WULFF, J, BAUMER, C, SMYCZEK, S, TIMMERMANN, B, BRUALLA, L. Single pencil beam benchmark of a module for Monte Carlo simulation of proton transport in the PENELOPE code. Med Phys, v. p. 48, p. 456–476, 2021. DOI: https://doi.org/10.1002/mp.14598

ALVA-SANCHEZ, M. S, PIANOSCHI, T. A. Study of the distribution of doses in tumors with hypoxia through the PENELOPE code. Radiat Meas, v. 167, p. 108428, 2020. DOI: https://doi.org/10.1016/j.radphyschem.2019.108428

SHEERAZ, Z, CHOW, J. C. L. Evaluation of dose enhancement with gold nanoparticles in kilovoltage radiotherapy using the new EGS geometry library in Monte Carlo simulation. AIMS Biophys, v. 8, p. 337–345, 2021. DOI: https://doi.org/10.3934/biophy.2021027

SALVAT, F, QUESADA, J. M. Collisions of Nucleons with Atoms: Calculated Cross Sections and Monte Carlo Simulation. Front Phys, v. 9, p. 733949, 2021. DOI: https://doi.org/10.3389/fphy.2021.733949

MASSERA, R. T, FERNANDEZ-VAREA, J. M, TOMAL, A. Impact of photoelectric cross section data on systematic uncertainties for Monte Carlo breast dosimetry in mammography. Phys Med Biol, v. 66, p. 115015, 2021. DOI: https://doi.org/10.1088/1361-6560/abf859

SALVAT, F, FERNANDEZ-VAREA, J, SEMPAU, J. PENELOPE-2008: a code system for Monte Carlo simulation of electron and photon transport. Nuclear Energy Agency OECD/NEA. Issy-les-Moulineaux, France. http://www.nea.fr. 2008;

PELOWITZ, DB. MCNPXTM USER’S MANUAL Version 2.6.0. Los Alamos National Laboratory, 2008.

IAEA- International Atomic Energy Agency. Absorbed Dose Determination in External Beam Radiotherapy. An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. Technical Reports Series No. 398. Vienna, 2000.

ARAKI, F, OHNO, T. The response of a radiophotoluminescent glass dosimeter in megavoltage photon and electron beams. Med Phys, v. 41, p. 122102, 2014. DOI: https://doi.org/10.1118/1.4901639

VENNING, AJ, NITSCHKE, KN, KEALL, PJ, BALDOCK, C. Radiological properties of normoxic polymer gel dosimeters. Med Phys, v. 32, p. 1047–1053, 2005. DOI: https://doi.org/10.1118/1.1881812

ROSENSCHÖLD, PM, NILSSON, P, KNÖÖS, T. Kilovoltage x-ray dosimetry--an experimental comparison between different dosimetry protocols. Phys Med Biol, v. 53, p. 4431–4442, 2008. DOI: https://doi.org/10.1088/0031-9155/53/16/014

SHEIKH-BAGHERI, D, ROGERS, DWO. Monte Carlo calculation of nine megavoltage photon beam spectra using the BEAM code. Med Phys, v. 29, p. 391–402, 2002. DOI: https://doi.org/10.1118/1.1445413

COHEN, M. Central axis depth dose data for use in radiotherapy. Br J Radiol Suppl, v. 11, p. 8–17, 1972.

CINTRA, FB, YORIYAZ, H. Electron absorbed dose comparison between MCNP5 and PENELOPE code Monte Carlo code for microdosimetry. In: 2009 International Nuclear Atlantic Conference - INAC Rio de Janeiro, RJ, Brazil; 2009.

HILL, R, HEALY, B, HOLLOWAY, L, KUNCIC, Z, THWAITES, D, BALDOCK, C. Advances in kilovoltage x-ray beam dosimetry. Phys Med Biol, v. 59, p. R183–R231, 2014. DOI: https://doi.org/10.1088/0031-9155/59/6/R183

BENALI, A-H, ISHAK-BOUSHAKI, GM, NOURREDDINE, A-M, ALLAB, M, PAPADIMITROULAS, P. A comparative evaluation of luminescence detectors: RPL-GD-301, TLD-100 and OSL-AL2O3:C, using Monte Carlo simulations. J Instrum, v. 12, p. P07017, 2017. DOI: https://doi.org/10.1088/1748-0221/12/07/P07017

KNEZEVIC, Z, STOLARCZYK , L, BESSIERES, I, BORDY, JM, MILJANIC, S, OLKO, P. Photon dosimetry methods outside the target volume in radiation therapy: Optically stimulated luminescence (OSL), thermoluminescence (TL) and radiophotoluminescence (RPL) dosimetry. Rad Meas, v. 57, p. 9–18, 2013. DOI: https://doi.org/10.1016/j.radmeas.2013.03.004

TONGKUM, S, SUWANPRADIT , P, VIDHYARKORN, S, SIRIPONGSAKUN, S, OONSIRI, S, RAKVONGTHAI, Y, ET AL. Determination of radiation dose and low-dose protocol for digital chest tomosynthesis using radiophotoluminescent (RPL) glass dosimeters. Phys Med, v. 73, p. 13–21, 2020. DOI: https://doi.org/10.1016/j.ejmp.2020.03.024

BALDOCK, C. Review of gel dosimetry: a personal reflection. J Phys Conf Ser, v. 777, p. 012029, 2017. DOI: https://doi.org/10.1088/1742-6596/777/1/012029

Downloads

Published

2022-09-18

Issue

Section

Articles

How to Cite

Relative dose-response from solid-state and gel dosimeters through Monte Carlo simulations. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 10, n. 3, 2022. DOI: 10.15392/bjrs.v10i3.2049. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2049.. Acesso em: 21 nov. 2024.

Similar Articles

1-10 of 357

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)