Artificial intelligence to evaluate diagnosed COVID-19 chest radiographs

Authors

  • Bruno Takara Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
  • Felipe Freitas
  • Alexandre Bacelar
  • Rochelle Lykawka
  • Mirko Salomon Alva Sanchez UFCSPA

DOI:

https://doi.org/10.15392/bjrs.v10i3.2056

Keywords:

x-ray, Artificial inteligence, Radiography

Abstract

We present a Machine Learning algorithm based on Python which can be used to aid COVID-19 diagnosis. This algorithm employs Convolutional Neural Networks (CNN) of ResNet-18 architecture from thoracic X-ray images to build a trained dataset that enables further comparisons between common pulmonary diseases and COVID-19 diagnosed patients to classify the radiological findings as being due the COVID-19 or other pathologies. We discuss the importance of setting the right parameters related to training and what they might represent in clinical procedures. We used a dataset containing 942 COVID-19 labeled radiographs from HCPA - Hospital das Clínicas de Porto Alegre and compared it to a public dataset from NIH Clinical Center containing images of pulmonary diseases. Lastly, our trained model had an accuracy of 81.76% for the imbalanced classes and an accuracy of 46.94% for the balanced classes, when compared to other pulmonary diseases such as pneumonia, edema, mass, consolidation, and fibrosis. These results disclose the difficulty of diagnosing COVID-19 from a chest radiograph as it resembles other pulmonary illnesses and makes room for further research in this matter.

Downloads

Download data is not yet available.

References

ELKINS A.; FREITAS F. F.; SANZ V. Developing an app to interpret chest X-rays to support the diagnosis of respiratory pathology with artificial intelligence. In: J Med Artif Intell, 2020. DOI: https://doi.org/10.21037/jmai.2019.12.01

CASCELLA M.; RAJNIK M.; ALEEM A. et al. Features, Evaluation, and Treatment of Coronavirus (COVID-19) [Updated 2021 Apr 20]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2021. Available at: <https://www.ncbi.nlm.nih.gov/books/NBK554776/>. Last acessed 12 June 2021

WHO. WHO Coronavirus (COVID-19) Dashboard. Available at: <https://covid19.who.int>. Last acecessed 10 February 2022.

WANG D.; HU B.; HU, C.; ZHU, F.; LIU, X.; ZHANG, J. et al. Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus Infected Pneumonia in Wuhan, China. In: JAMA, 2020. DOI: https://doi.org/10.1001/jama.2020.1585

HARMON S. A. ; SANFORD T. H. ; XU S. et al. Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets. In: Nat Commun 11, 4080, 2020. DOI: https://doi.org/10.1038/s41467-020-17971-2

WU J. ; WONG K. ; GUR Y. et al. Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents. In: JAMA Netw Open, 2020. DOI: https://doi.org/10.1001/jamanetworkopen.2020.22779

ELLAHHAM S. Artificial intelligence in the diagnosis and management of COVID-19: a narrative review. In: J Med Artif Intell, 2021. DOI: https://doi.org/10.21037/jmai-20-48

ZHU J.; SHEN B. ; ABBASI A. ; HOSHMAND-KOCHI M. ; LI H. ; DUONG T. Q. Deep transfer learning artificial intelligence accurately stages COVID-19 lung disease severity on portable chest radiographs. In: PLoS ONE, 2020. DOI: https://doi.org/10.1371/journal.pone.0236621

WEHBE R. M. ; SHENG J. ; DUTTA S. ; CHAI S. ; DRAVID A. ; BARUTCU S. ; WU Y. ; CANTRELL D. R. ; XIAO N. ; ALLEN B. D. ; MACNEALY G. A. ; SAVAS H. ; AGRAWAL R. ; PAREKH N. ; KATSAGGELOS A. K. DeepCOVID-XR: An Artificial Intelligence Algorithm to Detect COVID-19 on Chest Radiographs Trained and Tested on a Large U.S. Clinical Data Set. In: Radiology, vol. 299:1, pp. E167-E176, 2021. DOI: https://doi.org/10.1148/radiol.2020203511

LOPEZ-CABRERA J. D. ; OROZCO-MORALES R. ; PORTAL-DIAZ J. A. et al. Current limitations to identify COVID-19 using artificial intelligence with chest X-ray imaging. In: Health Technol. vol. 11, pp. 411–424, 2021. DOI: https://doi.org/10.1007/s12553-021-00520-2

JIAO Z. ; CHOI J. W. ; HALSEY K. ; TRAN T. M. L. ; HSIEH B. ; WANG D. ; EWEJE F.; WANG R. ; CHANG K. ; WU J. ; COLLINS S. A.; YI T. Y. ; DELWORTH A. T. ; LIU T. ; HEALEY T. T.; LU S.; WANG J. ; FENG X.; ATALAY M. K. et al. Prognostication of patients with COVID-19 using artificial intelligence based on chest x-rays and clinical data: a retrospective study. In: The Lancet Digital Health, vol. 3 pp. E286-E294, 2021. DOI: https://doi.org/10.1016/S2589-7500(21)00039-X

SUMMERS R. M. Artificial Intelligence of COVID-19 Imaging: A Hammer in Search of a Nail. In: Radiology, vol. 298(3), pp. E162-E164, 2021. DOI: https://doi.org/10.1148/radiol.2020204226

GitHub code repository. Available at :<https://github.com/BYTakara/covid_model>. Last accessed 8 February 2022.

NIHCC - CXR8 Data Set. Available at:<https://nihcc.app.box.com/v/ChestXray-NIHCC>. Last accessed 20 June 2021

ABELAIRA M. D. C.; ABELAIRA F. C. ; RUANO-RAVINA A. ; FERNANDEZ-VILLAR A. Use of Conventional Chest Imaging and Artificial Intelligence in COVID-19 Infection. A Review of the Literature. In: Open Respiratory Archives, vol. 3, 2021. DOI: https://doi.org/10.1016/j.opresp.2020.100078

Downloads

Published

2022-09-18

Issue

Section

Articles

How to Cite

Artificial intelligence to evaluate diagnosed COVID-19 chest radiographs. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 10, n. 3, 2022. DOI: 10.15392/bjrs.v10i3.2056. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2056.. Acesso em: 25 nov. 2024.

Similar Articles

121-130 of 158

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)