Manufacturing of Physical Phantom and Evaluation of a Software for Automated and Remote Quality Control in Mammography Using a Retrofit DR System

Authors

  • Laila Fernanda Moreira de Almeida Centro de Desenvolvimento da Tecnologia Nuclear https://orcid.org/0009-0007-1494-6381
  • Camila Engler Centro de Desenvolvimento da Tecnologia Nuclear
  • Peterson Lima Squair Centro de Desenvolvimento da Tecnologia Nuclear
  • Maria do Socorro Nogueira Centro de Desenvolvimento da Tecnologia Nuclear

DOI:

https://doi.org/10.15392/2319-0612.2024.2528

Keywords:

Mammography, Quality Control, Automation

Abstract

Mammography is crucial for the early detection of breast cancer, requiring periodic quality controls to ensure that images and patient exposure doses comply with regulatory limits. This study addresses the challenges involved in conducting quality control, such as the lack of qualified personnel and the subjectivity of daily evaluations with phantoms. Additionally, the research proposes the incorporation of automated and remote quality control tools. In this context, a simple phantom was developed by the IAEA using materials such as copper, acrylic, and aluminum, to be used with the Automated Tool for Image Analysis (ATIA) software. This software performs automatic image analyses, extracting data from the DICOM header and exporting it to a CSV file for analysis in Excel® spreadsheets. The objectives of this work were: (a) to manufacture the phantom according to the standard model from the IAEA Human Health Series No. 39 publication; (b) to apply the ATIA software in the daily monitoring of a mammography unit and the digital radiography (DR) image receptor retrofitted to an analog mammography unit at the Laboratory of Radioprotection Applied to Mammography (LARAM) of CDTN; (c) to evaluate and compare the responses obtained between the automated ATIA software and the manual IMAGEJ software. The results demonstrated the stability and consistency of the mammography system in metrics such as SDNR and SNR, essential for ensuring image quality. However, variabilities in horizontal and vertical MTF at lower spatial frequencies indicate discrepancies in resolving fine details. The detectability index (D') stood out for its high consistency, indicating the reliability of the mammography system in detecting small details. Thus, it can be inferred that significant differences between quality control software in various metrics highlight the importance of careful software selection to meet specific mammographic evaluation needs.

Downloads

Download data is not yet available.

Author Biography

  • Laila Fernanda Moreira de Almeida, Centro de Desenvolvimento da Tecnologia Nuclear

    Aluna de Mestrado da Seção de Dosimetria das Radiações (SECDOS), especificamente do Laboratório de Radioproteção Aplicada à Mamografia (LARAM) do Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN).

References

[1] MORA, P. ; PFEIFFER, D. ; ZHANG, G. et al. The IAEA remote and automated quality control methodology for radiography and mammography. Journal of Applied Clinical Medical Physics, Louisville, vol 22, p. 1–17, 2021. DOI: https://doi.org/10.1002/acm2.13431

[2] BRAZIL. Ministério da Saúde. Diretoria Colegiada da Agência Nacional de Vigilância Sanitária. Instrução Normativa IN Nº 92, de 27 de maio de 2021. Brasília, DF: Diário Oficial da União, 2021.

[3] BRAZIL. Ministério da Saúde. Diretoria Colegiada da Agência Nacional de Vigilância Sanitária. RDC Nº 611, de 9 de março de 2022. Brasília, DF: Diário Oficial da União, 2022.

[4] EFOMP - European Federation of Organizations for Medical Physics. EFOMP Mammo Protocol. Quality controls in Digital Mammography. 2017.

[5] IAEA - International Atomic Energy Agency. Implementation of a Remote and Automated Quality Control Programme for Radiography and Mammography Equipment. Vienna: Human Health Series nº39. Disponível em: https://www.iaea.org/publications/13539/implementation-of-a-remote-and-automated-quality-control-programme-for-radiography-and-mammography-equipment. Acesso em: 17 jun. 2024.

[6] IAEA - International Atomic Energy Agency. Remote/Automated quality control in Radiology. Vienna: Human Health Series nº39. Disponível em: https://humanhealth.iaea.org/HHW/MedicalPhysics/DiagnosticRadiology/PerformanceTesting/AutomatedQAinRadiology/index.html. Acesso em: 17 jun. 2024.

[7] DRTECH Co, Ltd. “RSM1824C / RSM2430C User Manual”. Disponível em: https://www.drtech.co.kr/kr/. Acesso em: 01 jun. 2024.

[8] DONINI, B. et al. Free software for performing physical analysis of systems for digital radiography and mammography. Medical physics, Bolonha, v. 41, n. 5, p. 051903, 2014. DOI: https://doi.org/10.1118/1.4870955

[9] FOGAGNOLI, M. P. et al. Implementação de um Programa de Controle de Qualidade Remoto para Avaliação de Imagens em Radiografia Convencional e Mamografia. Revista Brasileira de Física Médica, São Paulo, v. 16, p. 696-696, 2022. DOI: https://doi.org/10.29384/rbfm.2022.v16.19849001696

[10] MINITAB. Minitab Statistical Software, versão 18 [software]. State College, PA: Minitab, Inc., 2017.

Downloads

Published

2025-05-26

How to Cite

Manufacturing of Physical Phantom and Evaluation of a Software for Automated and Remote Quality Control in Mammography Using a Retrofit DR System. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4A (Suppl.), p. e2528, 2025. DOI: 10.15392/2319-0612.2024.2528. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2528. Acesso em: 1 jun. 2025.