SOLUBLE POLYMER-CURCUMIN ENCAPSULATION TO PROTECT AGAINST GAMMA IRRADIATION AND INCREASE THE WATER SOLUBILITY
DOI:
https://doi.org/10.15392/2319-0612.2024.2598Keywords:
curcumin, nanoencapsulation, gamma irradiationAbstract
Curcumin is a polyphenol derived from turmeric, a herbaceous plant native from Asia, which has been studying for medicinal properties. Over the years, different civilizations have used those plants to treat or prevent bacterial diseases. Technological advances have made it possible for scientists to study the activity mechanisms, as well as properties derived from these mechanisms, known as medicinal plants. These studies have confirmed that turmeric's medicinal properties are derived from its polyphenols, which in turn can be identified, isolated and used more efficiently. Despite curcumin's antimicrobial benefits, its highly hydrophobic molecule affects its use in biological systems, as well as its bioavailability in humans and animals. The process of modifying a molecule allows changes to be made to its characteristics, benefiting its use; in this context, encapsulation with polymers with amphiphilic characteristics, such as PVP K30, presents itself as a viable alternative for greater affinity with biosystems. The encapsulate curcumin, called C-PVP K30, proved to be possible and effective, keeping the molecule stable and in nanometric dimensions, based on results from DLS and ZETA analyses. Microscopy analysis (SEM-FEG) showed morphologically spherical and dispersed particles with small points of agglomeration. The successful encapsulation of this active substance allowed the solution to be studied under gamma radiation. The results obtained by FTIR and UV-Vis show that this process was unable to protect the curcumin molecule against ionizing radiation.
Downloads
References
MARCHI, J. P.; TEDESCO, L.; MELO, A. C.; FRASSON, A. C.; FRANÇA, V. F.; SATO, S. W.; LOVATO, E. C. W. Curcuma longa L., o açafrão da terra, e seus benefícios medicinais. Arq. Cienc. Saúde UNIPAR, v. 20, n. 3, p. 189-194, 2016.
SULTANA, S.; MUNIR, N.; MAHMOOD, Z.; RIAZ, M.; AKRAM, M.; REBEZOV, M.; KUDERINOVA, N.; MOLDABAYEVA, Z.; SHARIATI, M. A.; RAUF, A.; RENGASAMY, K. R. R. Molecular targets for the management of cancer using Curcuma longa Linn. phytoconstituents: A Review. Biomedicine & Pharmacotherapy, v. 135, p. 14, 2021.
DAI, C.; LIN, J.; LI, H.; SHEN, Z.; WANG, Y.; VELKOV, T.; SHEN, J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants, v. 11, p. 1-21, 2022.
VERMA, R. K.; KUMARI, P.; MAURYA, R. K.; KUMAR, V.; VERMA, R. B.; SINGH, R. K. Medicinal properties of turmeric (Curcuma longa L.): A review. International Journal of Chemical Studies, v. 6, n. 4, p. 1354-1357, 2018.
SUETH-SANTIAGO, V.; MENDES-SILVA, G. P.; DECOTÉ-RICARDO, D.; DE LIMA, M. E. F. CURCUMINA, O PÓ DOURADO DO AÇAFRÃO-DA-TERRA: INTROSPECÇÕES SOBRE QUÍMICA E ATIVIDADES BIOLÓGICAS, Química Nova, v. 38, n. 4, p.538-552, 2015.
ZHENG, D.; HUANG, C.; HUANG, H.; ZHAO, Y.; KHAN, M. R. U.; ZHAO, H.; HUANG, L. Antibacterial Mechanism of Curcumin: A Review. Chemistry & Biodiversity, v. 17, n. 8, p. 1-14, 2020.
TABANELLI, R.; BROGI, S. ; CALDERONE, V. Improving Curcumin Bioavailability: Current Strategies and Future Perspectives. Pharmaceutics, v. 13, n. 10, p. 1-37, 2021.
BRAHMKHATRI, V. P.; SHARMA, N.; SUNANDA, P.; D’SOUZA, A.; RAGHOTHAMA, S.; ATREYA, H. S. Curcumina nanoconjugate inhibits aggregation of N-terminal regio (Aβ-16) of an amyloid beta peptide. New Journal of Chemistry, v. 42, p. 19881-19892, 2018.
KAUR, R.; KHULLAR, P.; MAHAL, A.; GUPTA, A.; SINGH, N.; AHLUWALIA, G. K.; BAKSHI, M. S. Keto−Enol Tautomerism of Temperature and pH Sensitive Hydrated Curcumin Nanoparticles: Their Role as Nanoreactors and Compatibility with Blood Cells, Journal of Agricultural and Food Chemistry, v. 66, p. 11974-11980, 2018.
KEVIJ, H. T.; SALAMI, M.; MOHAMMADIAN, M.; KHODADADI, M. Fabrication and investigation of physicochemical, food simulant release, and antioxidant properties of whey protein isolate-based films activated by loading with curcumin through the pH-driven method. Food Hydrocolloids, v. 108, p. 1 - 9, 2020.
ALMEIDA. M. C. EFEITOS DO PROCESSAMENTO POR RADIAÇÃO EM ESPÉCIES DA FAMÍLIA ZINGIBERACEA: AÇAFRÃO (Curcuma longa L.), GENGIBER (Zingiber officinale Roscoe) e ZEDOÁRIA (Curcuma zedoaria (Christm.) Roscoe). 2012. 108 p. Dissertation (Master on Nuclear Technology – Applications) – Nuclear and Energy Research Institute, São Paulo, 2012.
FIGUEIRÊDO, H. S. EFEITOS DA RADIAÇÃO GAMA EM COMPOSTOS GLICOALCALÓIDES E FENÓLICOS DE VEGETAIS: UMA REVISÃO SISTEMÁTICA. 2021. 51 p. Dissertation (Master on Nuclear AND Energy Technologies) – Pernambuco Federal University, Recife, 2021.
BRAHMKHATRI, V. P.; SHARMA, N.; SUNANDA, P.; D’SOUZA, A.; RAGHOTHAMA, S.; ATREYA, H. S. Curcumina nanoconjugate inhibits aggregation of N-terminal regio (Aβ-16) of an amyloid beta peptide. New Journal of Chemistry, v. 42, p. 19881-19892, 2018.
CARVALHO, D. M. AVALIAÇÃO DA SOLUBILIDADE DA CURCUMINA E CARACTERIZAÇÃO DE FILME ATIVO INCORPORADO COM NOSUSPENSÃO DE CURCUMINA. 2014. 75 p. Dissertation (Master on Food Science and Technology) – Goiás Federal University, Goiânia, 2014.
OLIVEIRA, D. E. T. B. ; BEZERRA, L. A. B. ; OLVEIRA, R. J. ; MORAES, V. B. ; SILVA, J. A. B. ; FREITAS FILHO, J. R. ; FREITAS, J. C. R. ; RAMOS, C. S. R. Curcumina como indicador natural de ph: uma abordagem teórica-experimental para o ensino de química. Química Nova, v. 44, p. 217-223, 2021.
DARANDALE, S. S.; VAVIA, P. R. Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. Journal of Inclusion Phenomena and Macrocyclic Chemistry, v. 75, p. 315-322, 2013.
KUSUMADEWI, A. P.; MARTIEN, R.; PRAMONO, S.; SETYAWAN, A. A.; WINDARSIH, A.; ROHMAN, A. Application of FTIR spectroscopy and chemometrics for correlationof antioxidant activities, phenolics and flavonoid contents ofIndonesian Curcuma xanthorrhiza. International Journal of Food Properties, v. 25, n. 1, p. 2364-2372, 2022.
SHARMA, A.; JAIN, C. P. Preparation and characterization of solid dispersion of carvedilol with PVP K30, School of Pharmacy & Pharmaceutical Sciences, v. 5, n. 1, p.49-56, 2010.
Published
Issue
Section
Categories
License
Copyright (c) 2024 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/