Characterization of applicator material for treatment of superficial lesions in brachytherapy
DOI:
https://doi.org/10.15392/2319-0612.2024.2611Keywords:
Brachytherapy, superficial lesions, dimethyl polysiloxane, applicatorAbstract
The treatment of superficial lesions by brachytherapy is performed using radioactive sources positioned inside tumors or at a short distance from them, to deposit the prescribed dose in the target volume. In the case of treating skin lesions, due to the proximity between the source and the patient's surface, it is important to use applicators that conduct the radiation source to the region to be treated, ensuring the safety and hygiene of the process. The treatment of keloids, for example, can be performed by brachytherapy. Considering that the applicators must undergo rigorous quality control, this study presents an evaluation of an applicator developed for the treatment of skin lesions, consisting of fifteen spheres of synthetic material, for use in High dose rate brachytherapy (HDR) equipment, model Nucletron Digital V3, equipped with an Ir-192 source. It was considered important to determine whether the spheres are suitable for medical use, direct contact with the patient's skin and sterilization methods. Furthermore, it was necessary to consider the material's resistance to the irradiation process, since the spheres must be used in multiple applications. In this sense, it was necessary to define the material of the spheres and, through this characterization, consider their suitability for the proposed use. Since the spheres were acquired with generic specifications, this study aimed to perform analyses to characterize the material, defining its composition. Consequently, the focus was to evaluate their safe use in the brachytherapy applicator.
Downloads
References
[1] SALVAJOLI, J. V. et al. Radioterapia em Oncologia. 2. ed. São Paulo: Atheneu, 2013. p. 161-218. ISBN-10. 8538803816.
[2] SKOWRONEK, J. Brachytherapy in the treatment of skin cancer: an overview. Advances in Dermatology and Allergology/Post¸epy Dermatologii i Alergologii, Termedia Publishing, v. 32, n. 5, p. 362-367, 2015. DOI: https://doi.org/10.5114/pdia.2015.54746
[3] DAURADE, M. et al. Efficacy of surgical excision and brachytherapy in the treatment of keloids: A retrospective cohort study. Advances in Skin & Wound Care, LWW, v. 33, n. 11, p. 1–6, 2020. DOI: https://doi.org/10.1097/01.ASW.0000717228.02752.4e
[4] OHTA, M. et al. Verification of evaluation accuracy of absorbed dose in the dose-evaluation system for Iridium-192 brachytherapy for treatment of keloids. Biomedical Physics & Engineering Express, IOP Publishing, v. 4, n. 2, p. 025022, 2018. DOI: https://doi.org/10.1088/2057-1976/aa9d76
[5] BIJLARD, E. et al. Burden of keloid disease: a cross-sectional health-related quality of life assessment. Acta dermato-venereologica, v. 97, n. 2, p. 225–229, 2017. DOI: https://doi.org/10.2340/00015555-2498
[6] HOANG, D. et al. Surgical excision and adjuvant brachytherapy vs external beam radiation for the effective treatment of keloids: 10-year institutional retrospective analysis. Aesthetic surgery journal, Oxford University Press, v. 37, n. 2, p. 212–225, 2017. DOI: https://doi.org/10.1093/asj/sjw124
[7] KHAN, F. M.; GIBBONS, J. P. Khan’s the physics of radiation therapy. 5. ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2014. ISBN 978-1-4511-8245-3.
[8] WEN, A. et al. Comparative Analysis of 60Co and 192Ir Sources in High Dose Rate Brachytherapy for Cervical Cancer. Cancers, v. 14, n. 19, 2022. ISSN 2072-6694. DOI: https://doi.org/10.3390/cancers14194749
[9] ALMUQRIN, A. H. et al. Exploring the impact of Bi2O3 particle size on the efficacy of dimethylpolysiloxane for medical gamma/X-rays shielding applications. Radiation Physics and Chemistry, v. 220, p. 111629, 2024. DOI: https://doi.org/10.1016/j.radphyschem.2024.111629
[10] GOUDA, M. M.; ZARD, K. An extensive investigation on gamma shielding properties of dimethylpolysiloxane modified with nano sized SnO2 and CdO. Radiation Physics and Chemistry, v. 218, p. 111588, 2024. DOI: https://doi.org/10.1016/j.radphyschem.2024.111588
[11] GOUDA, M. M. et al. Nano tin oxide/dimethyl polysiloxane reinforced composite as a flexible radiation protecting material. Scientific Reports, v. 13, n. 1, p. 210, 2023. DOI: https://doi.org/10.1038/s41598-023-27464-z
[12] DONG, F. et al. Thermal degradation kinetics of functional polysiloxane with pendent γ-chloropropyl groups. Polymer Bulletin, v. 78, p. 1-14, 2021. DOI: https://doi.org/10.1007/s00289-019-03089-z
[13] STEINBACH, J. C. et al. A process analytical concept for in-line FTIR monitoring of polysiloxane formation. Polymers, v. 12, n. 11, p. 2473, 2020. DOI: https://doi.org/10.3390/polym12112473
[14] WÓJCIK-BANIA, M. Influence of the addition of organo-montmorillonite nanofiller on cross-linking of polysiloxanes–FTIR studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 252, p. 119491, 2021. DOI: https://doi.org/10.1016/j.saa.2021.119491
[15] DESHPANDE, G., REZAC, M. E. Kinetic aspects of the thermal degradation of poly (dimethyl siloxane) and poly (dimethyl diphenyl siloxane). Polymer Degradation and Stability, v. 76, n. 1, p. 17-24, 2002. DOI: https://doi.org/10.1016/S0141-3910(01)00261-0
[16] REDONDO, S. U. A. et al. Estudo da decomposição térmica de compósitos fibras de celulose/silicona. In: Proceedings of the 2002 Congresso Brasileiro de Engenharia e Ciências dos Materiais, Natal, 09 a 13 de novembro, vol. 1, pp. 1692-1698, 2002.
[17] LIU, B. et al. Gamma irradiation-induced degradation of silicone encapsulation. Materials Today Communications, v. 31, p. 103476, 2022. DOI: https://doi.org/10.1016/j.mtcomm.2022.103476
[18] TALLEY, S. J. et al. Flexible 3D printed silicones for gamma and neutron radiation shielding. Radiation Physics and Chemistry, v. 188, p. 109616, 2021. DOI: https://doi.org/10.1016/j.radphyschem.2021.109616
[19] MAEYAMA, T. et al. Development of a silicone-based radio-fluorogenic dosimeter using dihydrorhodamine 6G. Physica Medica, v. 114, p. 102684, 2023. DOI: https://doi.org/10.1016/j.ejmp.2023.102684
[20] CARTURAN, S. M. et al. Additive manufacturing of high-performance, flexible 3D siloxane-based scintillators through the sol-gel route. Applied Materials Today, v. 39, p. 102313, 2024. DOI: https://doi.org/10.1016/j.apmt.2024.102313
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 Juan Carlos Chrisostomo Lamônica, Marcela Morais Freitas, Mariana Oliveira Reis, Luciana Batista Nogueira, Jony Marques Geraldo, Clara B Nascimento, Arnoldo Mafra, Adriana de Souza Medeiros Batista
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/