Investigação da termoluminescência de alexandrita (BeAl2O4:Cr3+)
DOI:
https://doi.org/10.15392/bjrs.v8i2.1215Palavras-chave:
alexandrita, mineral, termoluminescência, dosimetriaResumo
A alexandrita natural (BeAl2O4:Cr3+) é um mineral amplamente encontrado no Brasil e tem sido investigada para atuar como um detector de radiação ionizante (dosímetro) com o uso da técnica da termoluminescência (TL). A utilização de materiais naturais na área, é interessante pelo seu menor custo comparado aos sintéticos, além da possibilidade de atuarem na dosimetria retrospectiva. Diferentes características das curvas TL de sete amostras foram investigadas, como a linearidade, homogeneidade, repetibilidade e fading. As amostras foram irradiadas com doses entre 0,5 – 5 Gy, utilizando uma fonte beta de 90Sr/90Y. Os resultados demonstram que a curva TL segue o mecanismo cinético de primeira ordem, além de possuir uma dose-resposta linear, boa repetibilidade e estabilidade do sinal em temperatura ambiente para até 33 dias de armazenamento após a dose. O ajuste também revelou cinco picos nas temperaturas 355, 405, 445, 530 e 585 K (taxa de aquecimento de 1 K/s). A caracterização química constatou que as amostras utilizadas são predominantemente formadas por alexandrita com uma porção significativa de fases apatita. Em geral, os resultados trazem características desejáveis dos materiais dosimétricos, sugerindo que a alexandrita tem potencial de aplicação na área.
Downloads
Referências
PETERSEN JÚNIOR, K. J.; SCHULTZ-GÜTTLER, R. A. Alexandrita no município de Minaçu, Goiás: Mineralogia, Geologia e considerações genéticas. 1998. 186 f. Universidade de São Paulo. 1998.
SCALVI, R. M. F. Relaxação dilpolar elétrica fotoinduzida em alexandrita sintética e natural. 2000. 154 f. Universidade de São Paulo. 2000.
TRINDADE, N. M.; SCALVI, R. M. F. Investigação das propriedades ópticas e elétricas em alexandrita natural e sintética. 2009. 175 f. Universidade Estadual Paulista “Julio de Mesquita Filho”. 2009.
IWATA, S. A. Aspectos Genéticos e Características Mineralógicas do Crisoberilo das Lavras de Esmeraldas de Ferros e Hematita - MG. 2000.
FERRAZ, G. M. et al. TL, EPR and Optical Absorption Studies on Natural Alexandrite Compared to Natural Chrysoberyl. Radiation Protection Dosimetry, v. 100, n. 1–4, p. 471–474, 2002.
PUGH-THOMAS, D.; WALSH, B. M.; GUPTA, M. C. Spectroscopy of BeAl2O4:Cr3+ with application to high-temperature sensing. Applied Optics, v. 49, n. 15, p. 2891–2897, 2010.
BUKIN, G. V. Optical generation in alexandrite (BeAl2O4:Cr3+). Kvant Tovaya Electronika, v. 5, p. 1168–1169, 1978.
SU, W.; KE, Y.; XUE, J. Beneficial effects of early treatment of infantile hemangiomas with a long-pulse Alexandrite laser. Lasers in Surgery and Medicine, 2014.
SAEDI, N. et al. Treatment of tattoos with a picosecond alexandrite laser: A prospective trial. Archives of Dermatology, v. 148, n. 12, p. 1360–1363, 2012.
IBRAHIMI, O. A. et al. Laser hair removal. Dermatologic Therapy, v. 24, n. 1, p. 94–107, 2011.
IZEWSKA, J. et al. The IAEA/WHO TLD postal dose quality audits for radiotherapy: a perspective of dosimetry practices at hospitals in developing countries. Radiotherapy and Oncology, v. 69, n. 1, p. 91–97, 2003.
RAMOS, F. S. et al. Análise comparativa dos testes de controle de qualidade em tomografia computadorizada de acordo com as legislações nacional e internacional. Brazilian Journal of Radiation Sciences, v. 3, n. 1A, p. 22, 2015.
TAUAHATA, LUIZ; SALATI, IVAN; PRINZIO, R. D. P.; ZIO, A. R. D. Radioproteção E Dosimetria : Fundamentos. [s.l: s.n.].
TRINDADE, N. M.; JACOBSOHN, L. G.; YOSHIMURA, E. M. Correlation between thermoluminescence and optically stimulated luminescence of α-Al2O3:C,Mg. Journal of Luminescence, v. 206, 2019.
TRINDADE, N. M.; KAHN, H.; YOSHIMURA, E. M. Thermoluminescence of natural BeAl2O4:Cr3+ Brazilian mineral: Preliminary studies. Journal of Luminescence, v. 195, p. 356–361, 2018.
IVANOV, V. Y. et al. Electronic excitations in BeAl2O4, Be2SiO4, and Be3Al2Si6O18 crystals. Physics of the Solid State, v. 47, n. 3, p. 466–473, 2005.
YUKIHARA, E. G.; MCKEEVER, S. W. S. Optically Stimulated Luminescence: Fundamentals and Applications. West Sussex: UK: John Wiley and Sons, 2011.
GROPPO, D. P.; CALDAS, L. V. E. Luminescent response from BeO exposed to alpha, beta and X radiations. Radiation Measurements, v. 71, n. Supplement C, p. 81–85, 2014.
MCKEEVER, S. W. S. On the analysis of complex thermoluminescence. Glow‐curves: Resolution into individual peaks. physica status solidi (a), v. 62, n. 1, p. 331–340, 1980.
PUCHALSKA, M.; BILSKI, P. GlowFit—a new tool for thermoluminescence glow-curve deconvolution. Radiation Measurements, v. 41, n. 6, p. 659–664, 2006.
RANDALL, J. T.; WILKINS, M. H. F. Phosphorescence and electron traps - I. The study of trap distributions. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, v. 184, n. 999, p. 365, 1945.
SHARMA, B. A.; SINGH, T. B.; GARTIA, R. K. Critical evaluation of goodness of fit of computerised glow curve deconvolution. Indian Journal of Pure & Applied Physics, v. 42, p. 492–497, 2004.
PRADHAN, A. S. et al. TL glow curve shape and response of LiF:Mg,Cu,Si—Effect of heating rate. Radiation Measurements, v. 43, n. 2–6, p. 361–364, fev. 2008.
DELICE, S.; BULUR, E.; GASANLY, N. M. Anomalous heating rate dependence of thermoluminescence in Tl2GaInS4 single crystals. Journal of Materials Science, v. 49, n. 24, p. 8294–8300, dez. 2014.
GINTHER, R. J.; KIRK, R. D. The Thermoluminescence of CaF[sub 2]:Mn. Journal of The Electrochemical Society, v. 104, n. 6, p. 365, jun. 1957.
TRINDADE, N. M. et al. Thermoluminescence and radioluminescence of alexandrite mineral. Journal of Luminescence, v. 206, 2019.
MCKEEVER, S. W. S. Thermoluminescence of Solids. Cambridge: Cambridge University Press, 1985.
YUKIHARA, E. G.; OKUNO, E. Desvendando a cor e a termoluminescência do topázio: um estudo dos defeitos e processos termicamente e opticamente estimulados no cristal natural. 2001. 380 f. Universidade de São Paulo. 2001.
CHEN, R.; PAGONIS, V.; LAWLESS, J. L. Evaluated thermoluminescence trapping parameters–What do they really mean? Radiation Measurements, v. 91, p. 21–27, 2016.
PEKPAK, E.; YILMAZ, A.; OZBAYOGLU, G. An Overview on Preparation and TL Characterization of Lithium Borates for Dosimetric Use. The Open Mineral Processing Journal, v. 3, n. 1, p. 14–24, maio 2010.
TRINDADE, N. M.; SCALVI, R. M. F.; SCALVI, L. V. DE A. Cr+3 Distribution in Al1 and Al2 Sites of Alexandrite (BeAl2O4: Cr3+) Induced by Annealing, Investigated by Optical Spectroscopy. Energy and Power Engineering, v. 2, n. 1, p. 18–24, 2010.
Downloads
Publicado
Edição
Seção
Licença
Direitos autorais (c) 2020 Brazilian Journal of Radiation Sciences

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Brazilian Journal of Radiation Sciences, editada pela Sociedade Brasileira de Proteção Radiológica, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo à Sociedade Brasileira de Proteção Radiológica, que está autorizada a publicá-lo em meio impresso, digital, ou outro existente, sem retribuição financeira para os autores.
Licença
Os artigos do BJRS são licenciados sob uma Creative Commons Atribuição 4.0 Licença Internacional, que permite o uso, compartilhamento, adaptação, distribuição e reprodução em qualquer meio ou formato, desde que você dê o devido crédito ao (s) autor (es) original (is) e à fonte, forneça um link para a licença Creative Commons, e indique se mudanças foram feitas. As imagens ou outro material de terceiros neste artigo estão incluídos na licença Creative Commons do artigo, a menos que indicado de outra forma em uma linha de crédito para o material. Se o material não estiver incluído no licença Creative Commons do artigo e seu uso pretendido não é permitido por regulamentação legal ou excede o uso permitido, você precisará obter permissão diretamente do detentor dos direitos autorais. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by/4.0/