Análise da matriz SWOT como estratégia para implantação do Reator Ap-Th1000 no Brasil

Autores

  • FRANCKY ROGER ARAUJO DA SILVA Universidade Federal Fluminense image/svg+xml
  • Giovanni Laranjo de Stefani Universidade Federal do Rio de Janeiro image/svg+xml
  • Marcelo Vilela da Silva Universidade Federal do Rio de Janeiro image/svg+xml

DOI:

https://doi.org/10.15392/2319-0612.2024.2405

Palavras-chave:

ApTh-1000, Tório, Matriz SWOT

Resumo

Este artigo analisa a Matriz SWOT para a implementação do reator AP-Th1000 visando a substituição futura dos reatores nucleares atuais que utilizam urânio como combustível por tório. Houve a necessidade de um estudo aprofundado da literatura nacional e internacional adaptada à realidade brasileira. Posteriormente, foram realizadas reuniões específicas para detectar todas as situações possíveis dos 4 pontos principais da matriz SWOT. Durante as sessões, que tiveram uma média de 1 hora, a expertise industrial e acadêmica dos autores foi demonstrada em competências como criatividade, colaboração, comunicação efetiva, abertura e tolerância, pensamento rápido, habilidade de síntese, foco no problema e flexibilidade durante as discussões de mais de 50 itens encontrados na análise dos 4 pontos da matriz SWOT. Cada reunião foi dividida em três partes: a primeira parte, que seria a fase Criativa; a segunda parte, que seria a fase Crítica; e, finalmente, a terceira fase, onde as ideias são filtradas para a permanência daquelas mais bem fundamentadas e de melhor aceitação. Em seguida, os aspectos listados foram classificados em 4 categorias: Forças (S), Fraquezas (W), Oportunidades (O) e Ameaças (T). Após a classificação, foi feito um ranking de prioridades, em ordem decrescente de importância, segundo os autores, das fraquezas e ameaças, foram feitas sugestões de neutralização. Por fim, os dados obtidos foram analisados. Concluímos por meio da análise SWOT que podemos observar uma quantidade expressiva de benefícios do uso do reator AP1000 com MOX de Tório e Urânio no desenvolvimento de tecnologias de geração de energia nuclear no Brasil.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

RIBEIRO, D. Nuclear fission. Elementary Science Magazine, v. 2, n. 4, p. 108, 2014

NEA, 2010. Uranium 2009: Resources, production, and Demand, s.l.: OECD.

International Atomic Energy Agency (IAEA), 2020. Red Book: Uranium Resources, Production, and Demand. Retrieved on March 16, 2023, from https://www.iaea.org/publications/13531.

WORLD NUCLEAR ASSOCIATION (WNA). 2020. Nuclear Fuel Report. Retrieved on March 16, 2023, from https://www.world-nuclear.org/getmedia/0de02f5e-b74d-49d5-af77-3ca78825a5d0/wna-nuclear-fuel-report-2020-final.pdf.aspx

NUCLEAR ENERGY AGENCY (NEA), 2018. Uranium 2018: Resources, Production, and Demand. Retrieved on March 16, 2023, from https://www.oecd-nea.org/ndd/pubs/2018/7413-uranium-2018.pdf

INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA), 2005. Thorium fuel cycle – Potential benefits and challenges. IAEA-TECDOC 1450, Viena, 2005

KASTEN, P. R. (1998) Review of the Radkowsky Thorium reactor concept, Science & Global Security: The Technical Basis for Arms Control, Disarmament, and Nonproliferation Initiatives, 7:3, 237-269, DOI: 10.1080/08929889808426462

SILVA, J.G. Reliability study of the AP1000 reactor for the large LOCA scenario in the context of a Tier 1 APS. Thesis, M.Sc in Nuclear Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, 109 pages, 2005.

MAIORINO, J. R.; Stefani, G. L.; MOREIRA, J. M. L.; ROSSI, P. C. R.; SANTOS, T. A. . Feasibility to convert an advanced PWR from UO2 to a mixed U/ThO2 core - Part I: Parametric studies. ANNALS OF NUCLEAR ENERGY, v. 102, p. 47-55, 2017.

GALPERIN, A., REICHERT, P. & RADKOWSKY, A. (1997): Thorium fuel for light water reactors—reducing proliferation potential of nuclear power fuel cycle, Science & Global Security: The Technical Basis for Arms Control, Disarmament, and Nonproliferation Initiatives, 6:3, 265-290

STEFANI G.L., MAIORINO J.R., LOUSADA J.M. The AP-TH 1000 – An advanced concept to MOX of thorium in a closed fuel cycle. Int J Energy Res 2020; 1-14. https://doiorg/10.1002/er5421

SANTOS, M.C., FERNANDES, M. The swot analysis tool in the process of formulating strategic actions in small companies. a case study at magnu jd construction company são paulo ltda. Fatec sebrae magazine in a debate: management, technologies, and business. v. 2, no. 2, p. 11-126, 2015

CERTO, S. C. & Peter, P. J. Strategic Management: Strategy Planning and Implementation. Translated by Steffen, Flávio D. São Paulo: Pearson, 1993.

TARAPANOFF, K. Organizational, and competitive intelligence. Brasília: Editora UnB, 2001.

GONÇALVES, L. C., MAIORINO, J. R. Comparison of open cycles of uranium and mixed thorium-uranium oxides using advanced reactors. International Nuclear Atlantic Conference - INAC 2017.

SILVA, A T. The future of nuclear energy. Magazine USP, São Paulo, n.76, p. 34-43, December / February 2007-2008.

GUIMARÃES L. S. MATTOS J. R. L. The Nuclear Option to Contribute to Clean and Sustainable Electricity Production. 3rd International Workshop | Advances in Cleaner Production. “CLEANER PRODUCTION INITIATIVES AND CHALLENGES FOR A SUSTAINABLE WORLD” São Paulo – Brazil – May 18th-20ndth – 2011

KAUR, G., et al. (2018). A review on thorium fuel cycle for nuclear energy. Renewable and Sustainable Energy Reviews, 81, 3051-3064.

RAMASWAMI, A., et al. (2016). Thorium fuel cycle for nuclear energy: An overview. Progress in Nuclear Energy, 87, 97-132

ALONSO, A., et al. (2012). Critical comparison of two thorium fuel cycles: Potential benefits and drawbacks. Energy Conversion and Management, 64, 313-327.

JONES, P., HILLIER, D., & Comfort, D. (2016). Sustainability and triple bottom line reporting–what is it all about? Business Strategy and the Environment, 25(3), 177-190.

Bruce Power. (n.d.). Community Investment Program. Retrieved on March 17, 2023, from https://www.brucepower.com/community/community-investment-program/.

Kori Nuclear Power Plant. (n.d.). Social Contribution. Retrieved on March 17, 2023, from http://www.kori-np.co.kr/eng/csr/csr01.asp

EDF. (n.d.). Gravelines Nuclear Power Plant: Supporting people with disabilities. Retrieved on March 17, 2023, from https://www.edf.fr/en/the-edf-group/who-we-are/locations/gravelines-nuclear-power-plant/supporting-people-with-disabilities

OETTINGENL, M. and SKOLIK, K. Numerical design of the Seed-Blanket Unit for the thorium nuclear fuel cycle. DOI: 10.1051/e3sconf/20161000067. E3S Web of Conferences 2016.

INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA) (2005). Thorium fuel cycle – Potential benefits and challenges. IAEA-TECDOC 1450, Viena, 2005

Direct Action of Unconstitutionality (ADI) 6895. Retrieved on January 27, 2022, from https://portal.stf.jus.br/processos/detalhe.asp?incidente=6201319.

OLIVEIRA, F., & REIS, N. (2018). SWOT analysis: A theoretical review. Journal of Management and Marketing Review, 3(1), 37-44.

KUMAR, S., & SINGH, T. (2018). Quantitative SWOT analysis for competitive prioritization in the iron ore mining industry. Journal of Central South University, 25(5), 1065-1078.

HITT, M., IRELAND, R., & HOSKISSON, R. (2016). Strategic Management: Concepts and Cases: Competitiveness and Globalization. Cengage Learning.

RADKOWSKY, A., and GALPERIN, A. (1998). The nonproliferative light water reactor: A new approach to light water reactor core technology. Nuclear Technology 124:215–222.

RAITSES, G., GALPERIN, A., & TODOSOW, M. (2012). Non-Proliferative, Thorium-Based, Core and Fuel Cycle for Pressurized Water Reactors. Upton, New York: Brookhaven National Laboratory.

Publicado

03-05-2024

Edição

Seção

Artigos

Como Citar

Análise da matriz SWOT como estratégia para implantação do Reator Ap-Th1000 no Brasil. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 2, p. e2405, 2024. DOI: 10.15392/2319-0612.2024.2405. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2405. Acesso em: 17 jul. 2025.