Manufacturing of Physical Phantom and Evaluation of a Software for Automated and Remote Quality Control in Mammography Using a Retrofit DR System
DOI:
https://doi.org/10.15392/2319-0612.2024.2528Palabras clave:
Mammography, Quality Control, AutomationResumen
Mammography is crucial for the early detection of breast cancer, requiring periodic quality controls to ensure that images and patient exposure doses comply with regulatory limits. This study addresses the challenges involved in conducting quality control, such as the lack of qualified personnel and the subjectivity of daily evaluations with phantoms. Additionally, the research proposes the incorporation of automated and remote quality control tools. In this context, a simple phantom was developed by the IAEA using materials such as copper, acrylic, and aluminum, to be used with the Automated Tool for Image Analysis (ATIA) software. This software performs automatic image analyses, extracting data from the DICOM header and exporting it to a CSV file for analysis in Excel® spreadsheets. The objectives of this work were: (a) to manufacture the phantom according to the standard model from the IAEA Human Health Series No. 39 publication; (b) to apply the ATIA software in the daily monitoring of a mammography unit and the digital radiography (DR) image receptor retrofitted to an analog mammography unit at the Laboratory of Radioprotection Applied to Mammography (LARAM) of CDTN; (c) to evaluate and compare the responses obtained between the automated ATIA software and the manual IMAGEJ software. The results demonstrated the stability and consistency of the mammography system in metrics such as SDNR and SNR, essential for ensuring image quality. However, variabilities in horizontal and vertical MTF at lower spatial frequencies indicate discrepancies in resolving fine details. The detectability index (D') stood out for its high consistency, indicating the reliability of the mammography system in detecting small details. Thus, it can be inferred that significant differences between quality control software in various metrics highlight the importance of careful software selection to meet specific mammographic evaluation needs.
Descargas
Referencias
[1] MORA, P. ; PFEIFFER, D. ; ZHANG, G. et al. The IAEA remote and automated quality control methodology for radiography and mammography. Journal of Applied Clinical Medical Physics, Louisville, vol 22, p. 1–17, 2021.
[2] BRAZIL. Ministério da Saúde. Diretoria Colegiada da Agência Nacional de Vigilância Sanitária. Instrução Normativa IN Nº 92, de 27 de maio de 2021. Brasília, DF: Diário Oficial da União, 2021.
[3] BRAZIL. Ministério da Saúde. Diretoria Colegiada da Agência Nacional de Vigilância Sanitária. RDC Nº 611, de 9 de março de 2022. Brasília, DF: Diário Oficial da União, 2022.
[4] EFOMP - European Federation of Organizations for Medical Physics. EFOMP Mammo Protocol. Quality controls in Digital Mammography. 2017.
[5] IAEA - International Atomic Energy Agency. Implementation of a Remote and Automated Quality Control Programme for Radiography and Mammography Equipment. Vienna: Human Health Series nº39. Disponível em: https://www.iaea.org/publications/13539/implementation-of-a-remote-and-automated-quality-control-programme-for-radiography-and-mammography-equipment. Acesso em: 17 jun. 2024.
[6] IAEA - International Atomic Energy Agency. Remote/Automated quality control in Radiology. Vienna: Human Health Series nº39. Disponível em: https://humanhealth.iaea.org/HHW/MedicalPhysics/DiagnosticRadiology/PerformanceTesting/AutomatedQAinRadiology/index.html. Acesso em: 17 jun. 2024.
[7] DRTECH Co, Ltd. “RSM1824C / RSM2430C User Manual”. Disponível em: https://www.drtech.co.kr/kr/. Acesso em: 01 jun. 2024.
[8] DONINI, B. et al. Free software for performing physical analysis of systems for digital radiography and mammography. Medical physics, Bolonha, v. 41, n. 5, p. 051903, 2014.
[9] FOGAGNOLI, M. P. et al. Implementação de um Programa de Controle de Qualidade Remoto para Avaliação de Imagens em Radiografia Convencional e Mamografia. Revista Brasileira de Física Médica, São Paulo, v. 16, p. 696-696, 2022.
[10] MINITAB. Minitab Statistical Software, versão 18 [software]. State College, PA: Minitab, Inc., 2017.
Descargas
Publicado
Número
Sección
Categorías
Licencia
Derechos de autor 2024 Laila Fernanda Moreira de Almeida, Camila Engler, Peterson Lima Squair, Maria do Socorro Nogueira

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/