Validation study of voxel phantom monte carlo simulations with EGSnrc C++ class library
DOI:
https://doi.org/10.15392/bjrs.v7i1.797Palabras clave:
EGSnrc, Monte Carlo, Voxel PhantomResumen
The aim of this work is to validate an in-house tool which writes voxel phantoms input files according to EGSnrc C++ class library (egspp) for Monte Carlo simulations. This tool was developed to read a phantom binary file and write a voxel phantom input deck file according to egspp structures. For the validation of the new tool, three voxel phantoms from literature considering different levels of complexity were used. They are the DM_BRA mouse phantom, Golem anthropomorphic phantom, and Case 5 XCAT model phantom from AAPM TG 195 report. For the different cases of study, internal and external photon sources were set and the energy deposition for different source and target tissue/organs were calculated. The results showed good agreement when comparing to dose calculates obtained with other Monte Carlo codes and published in the literature. The new tool was then validated for the egspp Monte Carlo studies with voxel phantoms.Descargas
Referencias
SECHOPOULOS, I.; ALI, E. S. M.; BADAL, A.; BADANO, A.; BOONE, J. M.; KYPRIANOU, I. S.; MAINEGRA-HING, E.; MCMILLAN, K. L.; MCNITT-GRAY, M. F.; ROGERS, D. W. O.; SAMEI, E.; TURNER, A. C. Monte Carlo reference data sets for imaging research: executive summary of the report of AAPM research committee task group 195. Med Phys, v. 42, p. 5679-5691, 2015.
KAWRAKOW, I.; MAINEGRA-HING, E.; ROGERS, D. W. O.; TESSIER, F.; WALTERS, B. R. B. The EGSnrc code system: monte carlo simulation of electron and photon transport. NRCC Report PIRS-701, Ottawa: National Research Council of Canada, Ottawa, 2011. 317p.
PELOWITZ, D. B.; HENDRICKS, J. S.; DURKEE, J. W.; JAMES, M. R.; FENSIN, M. L.; MCKINNEY, G. W.; MASHNIK, S. G.; WATERS, L. S. MCNPX 2.7.A Extensions. Report LA-UR-08-07182, Los Alamos: LANL, 2008.
SALVAT, F.; FERNÁNDEZ-VAREA, J. M.; SEMPAU, J. PENELOPE-2011: a code system for monte carlo simulation of electron and photon transport. NEA/NSC/DOC(2011)5, Issy-les-Moulineaux: OECD-NEA, 2011. 385p.
AGOSTINELLI, S.; ALLISON, J.; AMAKO, K.; APOSTOLAKIS, J.; ARAUJO, H.; ARCE, P.; ASAI, M.; AXEN, D.; BANERJEE, S.; BARRAND, G.; BEHNER, F.; BELLAGAMBA, L.; BOUDREAU, J.; BROGLIA, L.; BRUNENGO, A.; BURKHARDT, H.; CHAUVIE, S.; CHUMA, J.; CHYTRACEK, R.; COOPERMAN, G.; COSMO, G.; DEGTYARENKO, P.; DELL’ACQUA, A.; DEPAOLA, G.; DIETRICH, D.; ENAMI, R.; FELICIELLO, A.; FERGUSON, C.; FESEFELDT, H.; FOLGER, G.; FOPPIANO, F.; FORTI, A.; GARELLI, S.; GIANI, S.; GIANNITRAPANI, R.; GIBIN, D.; CADENAS, J. J. G.; GONZALEZ, I.; ABRIL, G. G.; GREENIAUS, G.; GREINER, W.; GRICHINE, V.; GROSSHEIM, A.; GUATELLI, S.; GUMPLINGER, P.; HAMATSU, R.; HASHIMOTO, K.; HASUI, H.; HEIKKINEN, A.; HOWARD, A.; IVANCHENKO, V.; JOHNSON, A.; JONES, F. W.; KALLENBACH, J.; KANAYA, N.; KAWABATA, M.; KAWABATA, Y.; KAWAGUTI, M.; KELNER, S.; KENT, P.; KIMURA, A.; KODAMA, T.; KOKOULIN, R.; KOSSOV, M.; KURASHIGE, H.; LAMANNA, E.; LAMPEN, T.; LARA, V.; LEFEBURE, V.; LEI, F.; LIENDL, M.; LOCKMAN, W. ; LONGO, F.; MAGNI, S.; MAIRE, M.; MEDERNACH, E.; MINAMIMOTO, K.; FREITAS, P. M.; MORITA, Y.; MURAKAMI, K.; NAGAMATU, M.; NARTALLO, R.; NIEMINEN, P.; NISHIMURA, T.; OHTSUBO, K.; OKAMURA, M.; O’NEALE, S.; OOHATA, Y.; PAECH, K.; PERL, J.; PFEIFFER, A.; PIA, M. G.; RANJARD, F.; RYBIN, A.; SADILOV, S.; DI SALVO, E.; SANTIN, G.; SASAKI, T.; SAVVAS, N.; SAWADA, Y.; SCHERER, S.; SEI, S.; SIROTENKO, V.; SMITH, D.; STARKOV, N.; STOECKER, H.; SULKIMO, J.; TAKAHATA, M.; TANAKA, S.; TCHERNIAEV, E.; TEHRANI, E. S.; TROPEANO, M.; TRUSCOTT, P.; UNO, H.; URBAN, L.; URBAN, P.; VERDERI, M.; WALKDEN, A.; WANDER, W.; WEBER, H.; WELLISCH, J. P.; WENAUS, T.; WILLIAMS, D. C.; WRIGHT, D.; YAMADA, T.; YOSHIDA, H.; ZSCHIESCHE, D. GEANT4-a simulation toolkit. Nucl Instrum Methods Phys Res, Sect A, v. 506, p. 250-303, 2003.
FONSECA, T. C. F.; MENDES, B. M.; LACERDA, M. A. S.; SILVA, L. A. C.; PAIXÃO, L.; BASTOS, F. M.; RAMIREZ, J.V.; JUNIOR, J. P. R. MCMEG: simulations of both PDD and TPR for 6 MV LINAC photon beam using different MC codes. Radiat Phys Chem, v. 140, p. 386-391, 2017.
FONSECA, T. C. F.; BOGAERTS, R.; LEBACQ, A.L.; RIBEIRO, R. M.; VANHAVERE, F. MaMP and FeMP: computational mesh phantoms applied for studying the variation of WBC efficiency using a NaI(Tl) detector. J Radiol Prot, v. 34, p. 529-543, 2014.
FONSECA, T. C. F.; BOGAERTS, R.; HUNT, J.; VANHAVERE, F. A methodology to develop computational phantoms with adjustable posture for WBC calibration. Phys Med Biol, v. 59, p. 6811-6825, 2014.
XU, X. G. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history. Phys Med Biol, v. 59, p. R233-R302, 2014.
PAIXÃO, L.; OLIVEIRA, B. B.; OLIVEIRA, M. A.; TEIXEIRA, M. H. A.; FONSECA, T. C. F.; NOGUEIRA, M. S. New method for generating breast models featuring glandular tissue spatial distribution. Radiat Phys Chem, v. 119, p. 200-206, 2016.
MENDES, B. M.; TRINDADE, B. M.; FONSECA, T. C. F.; CAMPOS, T. P. R. Assesment of radiation-induced secondary cancer risk in the brazilian population from left-sided breast-3D-CRT using MCNPX. Brit J Radiol, v. 90, p. 20170187, 2017.
HAN, M. C.; SEO, J. M.; LEE, S. H.; KIM, C. H.; YEOM, Y. S.; NGUYEN, T. T.; CHOI, C.; KIM, S.; JEONG, J. H.; SOHN, J. W. Continuously deforming 4D voxel phantom for realistic representation of respiratory motion in monte carlo dose calculation. IEEE Trans Nucl Sci, v. 63, p. 2918-2924, 2016.
VILLOING, D.; MARCATILI, S.; GARCIA, M. P.; BARDIÈS, M. Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/ICRU female reference computational model. Phys. Med. Biol., v. 62, p. 1885-1904, 2017.
KAWRAKOW, I.; MAINEGRA-HING, E.; TESSIER, F.; WALTERS, B. R. B. The EGSnrc C++ class library. NRC Report PIRS-898 (rev A), Ottawa: National Research Council of Canada, 2009.
MENDES, B. M.; ALMEIDA, I. G.; TRINDADE, B. M.; FONSECA, T. C. F.; CAMPOS, T. P. R. Development of a mouse computational model for MCNPx based on Digimouse® images and dosimetric assays. Braz J Pharm Sci, v. 53, p. 1-12, 2017.
PETOUSSI-HENß, N.; ZANKL, M. Voxel anthropomorphic models as a tool for internal dosimetry. Radiat Prot Dosim, v. 79, p. 415-418, 1998.
STOUT, D.; CHOW, P.; SILVERMAN, R.; LEAHY, R. M.; LEWIS, X.; GAMBHIR, S.; CHATZIIOANNOU, A. Creating a whole body digital mouse atlas with PET, CT and cryosection images. Mol Imaging Biol, v. 4, p. S27, 2002.
ICRP Publication 110. Realistic reference phantoms: an ICRP/ICRU joint effort. A report of adult reference computational phantoms. Ann ICRP, v. 39, p. 1-164, 2009.
ICRU - International Commission on Radiation Units and Measurements. Tissue substitutes in radiation dosimetry and measurement. ICRU Report 44, Bethesda: ICRU, 1989.
MENDES, B. M.; TRINDADE, B. M.; FONSECA, T. C. F.; CAMPOS, T. P. R. Validation of internal dosimetry protocols based in stochastic method. In: Proc. International Nuclear Atlantic Conference, 2015, São Paulo. Annals… São Paulo: Comissão Nacional de Energia Nuclear, 2015. p. 01-10.
TAYLOR, B. N.; KUYATT, C. E. Guidelines for evaluating and expressing the uncertainty of NIST measurements results. NIST Technical Note 1297, Washington: NIST, 1994.
MOHAMMADI, A.; KINASE, S. Monte Carlo simulations of photon specific absorbed fractions in a mouse voxel phantom. Prog Nucl Sci Technol, v. 1, p. 126-129, 2011.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2021 Brazilian Journal of Radiation Sciences (BJRS)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Licencia: los artículos de BJRS tienen una licencia internacional Creative Commons Attribution 4.0, que permite el uso, el intercambio, la adaptación, la distribución y la reproducción en cualquier medio o formato, siempre que se otorgue el crédito correspondiente al autor o autores originales y a la fuente, proporcione un enlace a la licencia Creative Commons e indique si se realizaron cambios. Las imágenes u otros materiales de terceros en el artículo están incluidos en la licencia Creative Commons del artículo, a menos que se indique lo contrario en una línea de crédito al material. Si el material no está incluido en la licencia Creative Commons del artículo y su uso previsto no está permitido por la regulación legal o excede el uso permitido, el autor deberá obtener el permiso directamente del titular de los derechos de autor. Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by/4.0/