Validation study of voxel phantom monte carlo simulations with EGSnrc C++ class library
DOI:
https://doi.org/10.15392/bjrs.v7i1.797Keywords:
EGSnrc, Monte Carlo, Voxel PhantomAbstract
The aim of this work is to validate an in-house tool which writes voxel phantoms input files according to EGSnrc C++ class library (egspp) for Monte Carlo simulations. This tool was developed to read a phantom binary file and write a voxel phantom input deck file according to egspp structures. For the validation of the new tool, three voxel phantoms from literature considering different levels of complexity were used. They are the DM_BRA mouse phantom, Golem anthropomorphic phantom, and Case 5 XCAT model phantom from AAPM TG 195 report. For the different cases of study, internal and external photon sources were set and the energy deposition for different source and target tissue/organs were calculated. The results showed good agreement when comparing to dose calculates obtained with other Monte Carlo codes and published in the literature. The new tool was then validated for the egspp Monte Carlo studies with voxel phantoms.Downloads
References
SECHOPOULOS, I.; ALI, E. S. M.; BADAL, A.; BADANO, A.; BOONE, J. M.; KYPRIANOU, I. S.; MAINEGRA-HING, E.; MCMILLAN, K. L.; MCNITT-GRAY, M. F.; ROGERS, D. W. O.; SAMEI, E.; TURNER, A. C. Monte Carlo reference data sets for imaging research: executive summary of the report of AAPM research committee task group 195. Med Phys, v. 42, p. 5679-5691, 2015.
KAWRAKOW, I.; MAINEGRA-HING, E.; ROGERS, D. W. O.; TESSIER, F.; WALTERS, B. R. B. The EGSnrc code system: monte carlo simulation of electron and photon transport. NRCC Report PIRS-701, Ottawa: National Research Council of Canada, Ottawa, 2011. 317p.
PELOWITZ, D. B.; HENDRICKS, J. S.; DURKEE, J. W.; JAMES, M. R.; FENSIN, M. L.; MCKINNEY, G. W.; MASHNIK, S. G.; WATERS, L. S. MCNPX 2.7.A Extensions. Report LA-UR-08-07182, Los Alamos: LANL, 2008.
SALVAT, F.; FERNÁNDEZ-VAREA, J. M.; SEMPAU, J. PENELOPE-2011: a code system for monte carlo simulation of electron and photon transport. NEA/NSC/DOC(2011)5, Issy-les-Moulineaux: OECD-NEA, 2011. 385p.
AGOSTINELLI, S.; ALLISON, J.; AMAKO, K.; APOSTOLAKIS, J.; ARAUJO, H.; ARCE, P.; ASAI, M.; AXEN, D.; BANERJEE, S.; BARRAND, G.; BEHNER, F.; BELLAGAMBA, L.; BOUDREAU, J.; BROGLIA, L.; BRUNENGO, A.; BURKHARDT, H.; CHAUVIE, S.; CHUMA, J.; CHYTRACEK, R.; COOPERMAN, G.; COSMO, G.; DEGTYARENKO, P.; DELL’ACQUA, A.; DEPAOLA, G.; DIETRICH, D.; ENAMI, R.; FELICIELLO, A.; FERGUSON, C.; FESEFELDT, H.; FOLGER, G.; FOPPIANO, F.; FORTI, A.; GARELLI, S.; GIANI, S.; GIANNITRAPANI, R.; GIBIN, D.; CADENAS, J. J. G.; GONZALEZ, I.; ABRIL, G. G.; GREENIAUS, G.; GREINER, W.; GRICHINE, V.; GROSSHEIM, A.; GUATELLI, S.; GUMPLINGER, P.; HAMATSU, R.; HASHIMOTO, K.; HASUI, H.; HEIKKINEN, A.; HOWARD, A.; IVANCHENKO, V.; JOHNSON, A.; JONES, F. W.; KALLENBACH, J.; KANAYA, N.; KAWABATA, M.; KAWABATA, Y.; KAWAGUTI, M.; KELNER, S.; KENT, P.; KIMURA, A.; KODAMA, T.; KOKOULIN, R.; KOSSOV, M.; KURASHIGE, H.; LAMANNA, E.; LAMPEN, T.; LARA, V.; LEFEBURE, V.; LEI, F.; LIENDL, M.; LOCKMAN, W. ; LONGO, F.; MAGNI, S.; MAIRE, M.; MEDERNACH, E.; MINAMIMOTO, K.; FREITAS, P. M.; MORITA, Y.; MURAKAMI, K.; NAGAMATU, M.; NARTALLO, R.; NIEMINEN, P.; NISHIMURA, T.; OHTSUBO, K.; OKAMURA, M.; O’NEALE, S.; OOHATA, Y.; PAECH, K.; PERL, J.; PFEIFFER, A.; PIA, M. G.; RANJARD, F.; RYBIN, A.; SADILOV, S.; DI SALVO, E.; SANTIN, G.; SASAKI, T.; SAVVAS, N.; SAWADA, Y.; SCHERER, S.; SEI, S.; SIROTENKO, V.; SMITH, D.; STARKOV, N.; STOECKER, H.; SULKIMO, J.; TAKAHATA, M.; TANAKA, S.; TCHERNIAEV, E.; TEHRANI, E. S.; TROPEANO, M.; TRUSCOTT, P.; UNO, H.; URBAN, L.; URBAN, P.; VERDERI, M.; WALKDEN, A.; WANDER, W.; WEBER, H.; WELLISCH, J. P.; WENAUS, T.; WILLIAMS, D. C.; WRIGHT, D.; YAMADA, T.; YOSHIDA, H.; ZSCHIESCHE, D. GEANT4-a simulation toolkit. Nucl Instrum Methods Phys Res, Sect A, v. 506, p. 250-303, 2003.
FONSECA, T. C. F.; MENDES, B. M.; LACERDA, M. A. S.; SILVA, L. A. C.; PAIXÃO, L.; BASTOS, F. M.; RAMIREZ, J.V.; JUNIOR, J. P. R. MCMEG: simulations of both PDD and TPR for 6 MV LINAC photon beam using different MC codes. Radiat Phys Chem, v. 140, p. 386-391, 2017.
FONSECA, T. C. F.; BOGAERTS, R.; LEBACQ, A.L.; RIBEIRO, R. M.; VANHAVERE, F. MaMP and FeMP: computational mesh phantoms applied for studying the variation of WBC efficiency using a NaI(Tl) detector. J Radiol Prot, v. 34, p. 529-543, 2014.
FONSECA, T. C. F.; BOGAERTS, R.; HUNT, J.; VANHAVERE, F. A methodology to develop computational phantoms with adjustable posture for WBC calibration. Phys Med Biol, v. 59, p. 6811-6825, 2014.
XU, X. G. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history. Phys Med Biol, v. 59, p. R233-R302, 2014.
PAIXÃO, L.; OLIVEIRA, B. B.; OLIVEIRA, M. A.; TEIXEIRA, M. H. A.; FONSECA, T. C. F.; NOGUEIRA, M. S. New method for generating breast models featuring glandular tissue spatial distribution. Radiat Phys Chem, v. 119, p. 200-206, 2016.
MENDES, B. M.; TRINDADE, B. M.; FONSECA, T. C. F.; CAMPOS, T. P. R. Assesment of radiation-induced secondary cancer risk in the brazilian population from left-sided breast-3D-CRT using MCNPX. Brit J Radiol, v. 90, p. 20170187, 2017.
HAN, M. C.; SEO, J. M.; LEE, S. H.; KIM, C. H.; YEOM, Y. S.; NGUYEN, T. T.; CHOI, C.; KIM, S.; JEONG, J. H.; SOHN, J. W. Continuously deforming 4D voxel phantom for realistic representation of respiratory motion in monte carlo dose calculation. IEEE Trans Nucl Sci, v. 63, p. 2918-2924, 2016.
VILLOING, D.; MARCATILI, S.; GARCIA, M. P.; BARDIÈS, M. Internal dosimetry with the Monte Carlo code GATE: validation using the ICRP/ICRU female reference computational model. Phys. Med. Biol., v. 62, p. 1885-1904, 2017.
KAWRAKOW, I.; MAINEGRA-HING, E.; TESSIER, F.; WALTERS, B. R. B. The EGSnrc C++ class library. NRC Report PIRS-898 (rev A), Ottawa: National Research Council of Canada, 2009.
MENDES, B. M.; ALMEIDA, I. G.; TRINDADE, B. M.; FONSECA, T. C. F.; CAMPOS, T. P. R. Development of a mouse computational model for MCNPx based on Digimouse® images and dosimetric assays. Braz J Pharm Sci, v. 53, p. 1-12, 2017.
PETOUSSI-HENß, N.; ZANKL, M. Voxel anthropomorphic models as a tool for internal dosimetry. Radiat Prot Dosim, v. 79, p. 415-418, 1998.
STOUT, D.; CHOW, P.; SILVERMAN, R.; LEAHY, R. M.; LEWIS, X.; GAMBHIR, S.; CHATZIIOANNOU, A. Creating a whole body digital mouse atlas with PET, CT and cryosection images. Mol Imaging Biol, v. 4, p. S27, 2002.
ICRP Publication 110. Realistic reference phantoms: an ICRP/ICRU joint effort. A report of adult reference computational phantoms. Ann ICRP, v. 39, p. 1-164, 2009.
ICRU - International Commission on Radiation Units and Measurements. Tissue substitutes in radiation dosimetry and measurement. ICRU Report 44, Bethesda: ICRU, 1989.
MENDES, B. M.; TRINDADE, B. M.; FONSECA, T. C. F.; CAMPOS, T. P. R. Validation of internal dosimetry protocols based in stochastic method. In: Proc. International Nuclear Atlantic Conference, 2015, São Paulo. Annals… São Paulo: Comissão Nacional de Energia Nuclear, 2015. p. 01-10.
TAYLOR, B. N.; KUYATT, C. E. Guidelines for evaluating and expressing the uncertainty of NIST measurements results. NIST Technical Note 1297, Washington: NIST, 1994.
MOHAMMADI, A.; KINASE, S. Monte Carlo simulations of photon specific absorbed fractions in a mouse voxel phantom. Prog Nucl Sci Technol, v. 1, p. 126-129, 2011.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/