Levels of thorium, uranium and potassium in Brazilian geological sediment determined by gamma-ray spec-troscopy and instrumental neutron activation analysis

Autores

  • Rogerio Baria Universidade de São Paulo image/svg+xml
    • S Watanabe Universidade de São Paulo image/svg+xml
      • C S Munita Nuclear and Energy Research Institute
        • P C S Silva Nuclear and Energy Research Institute
          • Sonia Tatumi Universidade Federal de São Paulo image/svg+xml

            DOI:

            https://doi.org/10.15392/2319-0612.2022.1984

            Palavras-chave:

            Marine terrace, dose rate, INAA, γ-ray spectroscopy, 238U, 232Th, 40K.

            Resumo

            The Brazilian coast of the terrace contains a wealth of evidence that can be used to explain the evolution of the coastline over the past 120k years. These studies include marine sediment geochronology based on dosimetry dating methods, in particular thermoluminescence. To determine the age of the terrace using luminescence dosimetry methods, it is necessary to decide on the exact mass fractions of 238U, 232Th, and 40K. These mass fraction values are used to calculate the annual dose rate of ionized radiation. In this context, in the present work, we studied eight marine sediment samples collected in the city of São Vicente on the coast of São Paulo state, Brazil, and determined the mass fractions of elements 238U, 232Th, and 40K by instrumental neutron activation analysis (INAA) and γ-ray spectroscopy. Linear regression mathematical methods are used to evaluate analytical methods accuracy. The results show a good correlation with a R2 value of more than 0.71. Therefore, it is possible to calculate the resulting mass fraction, calculate the dose rates of these sediments, and contribute to their date.

            Downloads

            Os dados de download ainda não estão disponíveis.

            Referências

            SCHMIDT, C.; ANGHELINU, M.; HAMBACH, U.; VERES, D.; LEHMKUHL, F. Reassessing the timing of Upper Palaeolithic deposits in the Ceahlău Basin (Eastern Carpathians, Romania): geochronological and archaeological implications. Quat. Geoch., v. 55, p. 1-15, 2020. DOI: https://doi.org/10.1016/j.quageo.2019.101020

            RYAN, D.; BOURMAN, R.; PRICE, D.; MURRAY-WALLACE, C. Identification of a penul-timate interglacial (marine isotope stage 7) alluvium in South Australia and its climatic and sea level implications. Trans. R. Soc. S. Aust., v. 22, p. 208-223, 2018. DOI: https://doi.org/10.1080/03721426.2018.1509415

            Frouin, M.; lahaye, C.; valladas, H.; higham, T.; debénath, A.; delagnes, A.; mercier, N. Dating the middle palaeolithic deposits of La Quina Amont (Charente, France) using luminescence meth-ods. J. Hum. Evol., v. 109 p. 30-45, 2017. DOI: https://doi.org/10.1016/j.jhevol.2017.05.002

            ADAMIEC, G.; AITKEN, M. J. Dose-Rate Conversion Factors: Update, Anc. TL, v. 16, p.37-49, 1998.

            AITKEN, M. J. Thermoluminescence Dating, London: Academic Press, 1985.

            PRESCOTT, J. R.; HUTTON, J. T. Cosmic ray and gamma-ray dosimetry for TL and ESR, Nucl. Tracks Radiat. Meas., vol. 14, n 1/2, p. 223-227, 1988. DOI: https://doi.org/10.1016/1359-0189(88)90069-6

            AITKEN, M. J. An Introduction to Optical Dating, Oxford: Oxford University Press, 1998.

            ROBERTS, R. G. Luminescence dating in archaeology: from origins to optical, Radiat. Meas., v. 27, p. 819-892, 1997. DOI: https://doi.org/10.1016/S1350-4487(97)00221-7

            COSTA, A. F.; MUNITA, C. S.; ZUSE, S.; KIPNIS, R. Archaeometry and Archaeology: pre-liminary studies of the ceramics from archaeological sites of the upper Madeira river/Rondônia – Brazil, Braz. J. Radiat. Sci., v. 9, p. 1-16, 2021. DOI: https://doi.org/10.15392/bjrs.v9i1A.1424

            TUDELA, D. R. G.; ASTOLFO, A. G. M..; TATUMI, S. H.; MITTANI, J. C. R.; MUNITA, C. S. Preliminary evidence of prehistoric human activity by chemical analysis of sediments from Lapa Grande de Taquaraçu archaeological site using INAA, J. Radioanal. Nucl. Chem., v. 325, p. 725-736, 2020. DOI: https://doi.org/10.1007/s10967-020-07217-2

            MUNITA, C. S.; GLASCOCK, M. D.; HAZEMFRATZ, R. Neutron Activation Analysis: An Overview, In: Recent Advances in Analytical Techniques, BenthamScience, Sharjah & UAE, v. 3, 2019. p. 179-227. DOI: https://doi.org/10.2174/9781681085722119030007

            ESTOKOVA, A.; PALASCAKOVA, L. Assessment of natural radioactivity levels of cement and cement composites in the Slovak Republic. Int. J. Environ. Res. Public Health, v 10, p. 7165-7179, 2013. DOI: https://doi.org/10.3390/ijerph10127165

            RAGHU, Y.; HARIKRISHNAN, N.; CHANDRASEKARAN, A.; RAVISANKAR, R. Assess-ment of natural radioactivity and associated radiation hazards in some building materials used in Kilpenathur, Tiruvannamalai Dist, Tamilnadu, India. African J. Basic Appl. Sci, v. 7, p. 16-25, 2015. DOI: https://doi.org/10.1063/1.4929205

            COLLIER, D. E.; BROWN, S. A.; BLAGOJEVIC, N.; SOLDENHOFF, K. H.; RING, R. J. Thorium in Mineral Products, Radiat. Prot. Dosim., v. 97, p.177-180, 2001. DOI: https://doi.org/10.1093/oxfordjournals.rpd.a006657

            KNOLL, G. F. Radiation Detection Measurements, New York: John Wiley, 2000.

            IAEA - International Atomic Energy Agency. Measurement of radionuclides in food and the environment: A Guidebook. IAEA-TR-295, Vienna: IAEA, 1989. 176p.

            Downloads

            Publicado

            04-12-2022 — Atualizado em 04-01-2023

            Versões

            Edição

            Seção

            INAC 2021_XV ENAN