Levels of thorium, uranium and potassium in Brazilian geological sediment determined by gamma-ray spec-troscopy and instrumental neutron activation analysis

Authors

  • Rogerio Baria Universidade de São Paulo
  • S Watanabe University of São Paulo
  • C S Munita Nuclear and Energy Research Institute
  • P C S Silva Nuclear and Energy Research Institute
  • Sonia Tatumi Federal University of São Paulo

DOI:

https://doi.org/10.15392/2319-0612.2022.1984

Keywords:

Marine terrace, dose rate, INAA, γ-ray spectroscopy, 238U, 232Th, 40K.

Abstract

The Brazilian coast of the terrace contains a wealth of evidence that can be used to explain the evolution of the coastline over the past 120k years. These studies include marine sediment geochronology based on dosimetry dating methods, in particular thermoluminescence. To determine the age of the terrace using luminescence dosimetry methods, it is necessary to decide on the exact mass fractions of 238U, 232Th, and 40K. These mass fraction values are used to calculate the annual dose rate of ionized radiation. In this context, in the present work, we studied eight marine sediment samples collected in the city of São Vicente on the coast of São Paulo state, Brazil, and determined the mass fractions of elements 238U, 232Th, and 40K by instrumental neutron activation analysis (INAA) and γ-ray spectroscopy. Linear regression mathematical methods are used to evaluate analytical methods accuracy. The results show a good correlation with a R2 value of more than 0.71. Therefore, it is possible to calculate the resulting mass fraction, calculate the dose rates of these sediments, and contribute to their date.

Downloads

Download data is not yet available.

References

SCHMIDT, C.; ANGHELINU, M.; HAMBACH, U.; VERES, D.; LEHMKUHL, F. Reassessing the timing of Upper Palaeolithic deposits in the Ceahlău Basin (Eastern Carpathians, Romania): geochronological and archaeological implications. Quat. Geoch., v. 55, p. 1-15, 2020. DOI: https://doi.org/10.1016/j.quageo.2019.101020

RYAN, D.; BOURMAN, R.; PRICE, D.; MURRAY-WALLACE, C. Identification of a penul-timate interglacial (marine isotope stage 7) alluvium in South Australia and its climatic and sea level implications. Trans. R. Soc. S. Aust., v. 22, p. 208-223, 2018. DOI: https://doi.org/10.1080/03721426.2018.1509415

Frouin, M.; lahaye, C.; valladas, H.; higham, T.; debénath, A.; delagnes, A.; mercier, N. Dating the middle palaeolithic deposits of La Quina Amont (Charente, France) using luminescence meth-ods. J. Hum. Evol., v. 109 p. 30-45, 2017. DOI: https://doi.org/10.1016/j.jhevol.2017.05.002

ADAMIEC, G.; AITKEN, M. J. Dose-Rate Conversion Factors: Update, Anc. TL, v. 16, p.37-49, 1998.

AITKEN, M. J. Thermoluminescence Dating, London: Academic Press, 1985.

PRESCOTT, J. R.; HUTTON, J. T. Cosmic ray and gamma-ray dosimetry for TL and ESR, Nucl. Tracks Radiat. Meas., vol. 14, n 1/2, p. 223-227, 1988. DOI: https://doi.org/10.1016/1359-0189(88)90069-6

AITKEN, M. J. An Introduction to Optical Dating, Oxford: Oxford University Press, 1998.

ROBERTS, R. G. Luminescence dating in archaeology: from origins to optical, Radiat. Meas., v. 27, p. 819-892, 1997. DOI: https://doi.org/10.1016/S1350-4487(97)00221-7

COSTA, A. F.; MUNITA, C. S.; ZUSE, S.; KIPNIS, R. Archaeometry and Archaeology: pre-liminary studies of the ceramics from archaeological sites of the upper Madeira river/Rondônia – Brazil, Braz. J. Radiat. Sci., v. 9, p. 1-16, 2021. DOI: https://doi.org/10.15392/bjrs.v9i1A.1424

TUDELA, D. R. G.; ASTOLFO, A. G. M..; TATUMI, S. H.; MITTANI, J. C. R.; MUNITA, C. S. Preliminary evidence of prehistoric human activity by chemical analysis of sediments from Lapa Grande de Taquaraçu archaeological site using INAA, J. Radioanal. Nucl. Chem., v. 325, p. 725-736, 2020. DOI: https://doi.org/10.1007/s10967-020-07217-2

MUNITA, C. S.; GLASCOCK, M. D.; HAZEMFRATZ, R. Neutron Activation Analysis: An Overview, In: Recent Advances in Analytical Techniques, BenthamScience, Sharjah & UAE, v. 3, 2019. p. 179-227. DOI: https://doi.org/10.2174/9781681085722119030007

ESTOKOVA, A.; PALASCAKOVA, L. Assessment of natural radioactivity levels of cement and cement composites in the Slovak Republic. Int. J. Environ. Res. Public Health, v 10, p. 7165-7179, 2013. DOI: https://doi.org/10.3390/ijerph10127165

RAGHU, Y.; HARIKRISHNAN, N.; CHANDRASEKARAN, A.; RAVISANKAR, R. Assess-ment of natural radioactivity and associated radiation hazards in some building materials used in Kilpenathur, Tiruvannamalai Dist, Tamilnadu, India. African J. Basic Appl. Sci, v. 7, p. 16-25, 2015. DOI: https://doi.org/10.1063/1.4929205

COLLIER, D. E.; BROWN, S. A.; BLAGOJEVIC, N.; SOLDENHOFF, K. H.; RING, R. J. Thorium in Mineral Products, Radiat. Prot. Dosim., v. 97, p.177-180, 2001. DOI: https://doi.org/10.1093/oxfordjournals.rpd.a006657

KNOLL, G. F. Radiation Detection Measurements, New York: John Wiley, 2000.

IAEA - International Atomic Energy Agency. Measurement of radionuclides in food and the environment: A Guidebook. IAEA-TR-295, Vienna: IAEA, 1989. 176p.

Downloads

Published

2022-12-04 — Updated on 2023-01-04

Versions

Issue

Section

INAC 2021_XV ENAN

How to Cite

Levels of thorium, uranium and potassium in Brazilian geological sediment determined by gamma-ray spec-troscopy and instrumental neutron activation analysis. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 10, n. 3B (Suppl.), 2023. DOI: 10.15392/2319-0612.2022.1984. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/1984.. Acesso em: 19 may. 2024.

Similar Articles

1-10 of 496

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)