Usinas Nucleares: Avanços Recentes em Segurança

Autores

  • Lorenzo De Micheli IPEN - Instituto de Pesquisas Energéticas e Nucleares https://orcid.org/0000-0003-4383-2248 (não autenticado)
  • Claudia Giovedi IPEN - Instituto de Pesquisas Energéticas e Nucleares
  • Alfredo Abe IPEN - Instituto de Pesquisas Energéticas e Nucleares
  • Almir Oliveira Neto IPEN - Instituto de Pesquisas Energéticas e Nucleares

DOI:

https://doi.org/10.15392/2319-0612.2024.2612

Palavras-chave:

Small Modular Reactors (SMRs), Accident Tolerant Fuels (ATFs), Renewable Energy

Resumo

O acidente de Fukushima Daiichi em 2011 impactou significativamente o processo de licenciamento de usinas nucleares (NPPs) devido à necessidade de mitigar a geração de hidrogênio a partir da reação entre água/vapor e o material de revestimento de liga à base de zircônio. Reatores Modulares de Pequeno Porte (SMRs) surgiram como uma alternativa mais segura, incorporando sistemas de segurança passivos e simplificações de projeto para mitigar os riscos. O SMR também oferece vantagens como construção modular, custos reduzidos e capacidade de gerar eletricidade e calor para várias aplicações. No entanto, permanecem desafios, incluindo a percepção pública, os altos custos e o risco de proliferação. Para enfrentar esses desafios, os esforços contínuos de pesquisa e desenvolvimento se concentram no gerenciamento de gases combustíveis, em combustíveis tolerantes a acidentes (ATFs) e simulações computacionais para otimizar os projetos de SMR e garantir sua segurança e sustentabilidade.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

[1] HUSSEIN, E. M. A. “Emerging small modular nuclear power reactors: A critical review”, Physics Open 5 (2020) 100038. https://doi.org/10.1016/j.physo.2020.100038

[2] Vinoya, C.L.; Ubando, A.T.; Culaba, A.B.; Chen, W.-H. State-of-the-Art Review of Small Modular Reactors. Energies 2023, 16, 3224. https://doi.org/10.3390/en16073224

[3] Ashoori, S.; Gates, I. D. Small modular nuclear reactors. A pathway to cost savings and environmental progress in SAGD operations. Next Energy, 4, 100128. (2024).

[4] Zou, Z.; Wang, F.; Deng, J.; Zhang; H.; Zhang, M.; Peng, H.; Qin, H. Hydrogen hazard mitigation in small modular reactor during SBO severe accident using GASFLOW-MPI. Progress in Nuclear Energy, 147, 104193. (2022).

[5] IAEA, Advances in small modular reactor technology developments, in: International Atomic Energy Agency, A Supplement to: IAEA Advanced Reactors Information System (ARIS), 2016. https://aris.iaea.org/Publications/SMR-Book _2016.pdf

[6] INGERSOLL, D T. Small Modular Reactors: Nuclear Power Fad or Future? Woodhead Publishing Series in Energy: Number 90. Woodhead Publishing is an imprint of Elsevier. ISBN: 978-0-08-100268-1 (online)

[7] International Atomic Energy Agency, Mitigation of Hydrogen Hazards in Water Cooled Power Reactors, IAEA-TECDOC-1196, IAEA, Vienna (2001). ISSN 1011–4289. https://www.iaea.org/publications/search/type/tecdoc-series

[8] International Atomic Energy Agency. Small Modular Reactors: Advances in SMR Developments 2024. https://doi.org/10.61092/iaea.3o4h-svum

[9] KIM, H. G.; KIM, I. H.; JUNG, Y. I.; PARK, D. J.; PARK, J. Y.; KOO, Y. H. Microstructure and Mechanical Strength of Surface Ods Treated Zircaloy-4 Sheet Using Laser Beam Scanning. Nuclear Engineering and Technology. Volume 46, Issue 4. 2014. Pages 521-528. ISSN 1738-5733. https://doi.org/10.5516/NET.07.2014.027. (https://www.sciencedirect.com/science/article/pii/S1738573315301200)

[10] AVELAR, A. M.; MOURÃO, M. B.; MATURANA, M.; GIOVEDI, C.; ABE, A. Y.; PEDRASSANI, R.; SU, J. On the nuclear safety improvement by post-inerting small modular reactor with stainless steel cladding. Annals of Nuclear Energy. Volume 149. 2020. 107775. ISSN 0306-4549. https://doi.org/10.1016/j.anucene.2020.107775.

[11] MIGNACCA, B.; LOCATELLI, G.; SAINATI, T. Deeds not words: Barriers and remedies for Small Modular nuclear Reactors. Energy, Volume 206, 2020, 118137, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2020.118137.

[12] KIM, P.; CHIRAYATH, S. S. Assessing the nuclear weapons proliferation risks in nuclear energy newcomer countries: The case of small modular reactors. Nuclear Engineering and Technology. Volume 56, Issue 8. 2024. Pages 3155-3166. ISSN 1738-5733. https://doi.org/10.1016/j.net.2024.03.016.

[13] International Atomic Energy Agency, “Developments in the Analysis and Management of Combustible Gases in Severe Accidents in Water Cooled Reactors following the Fukushima Daiichi Accident”, IAEA-TECDOC-1939, IAEA, Vienna (2020). https://www.iaea.org/publications/search/type/tecdoc-series

[14] GREENE, G.A.; FINFROCK, C.; BURSON, S.B. Phenomenological studies on molten core-concrete interactions. Nuclear Engineering and Design. Volume 108, Issues 1–2, 1988, Pages 167-177, ISSN 0029-5493, https://doi.org/10.1016/0029-5493(88)90063-5.

[15] CHUANG, K.T.; SEDDON, W. A.; QUAIATTINI, R. J.; PUISSANT, L. J. “Safe Recombination of Hydrogen and Oxygen with Wetproofed Catalysts”, Int'l Symposium on Hydrogen Systems, Beijing, China, May 1985, Beijing Info. Centre, Beijing (1985). https://doi.org/10.1016/B978-1-4832-8375-3.50106-5

[16] POLSHETTIWAR V.; VARMA, R. S. (2010) Green chemistry by nanocatalysis. Green Chem 12:743–754. https://doi.org/10.1039/B921171C

[17] SANAP, K. K.; VARMA, S.; WAGHMODE, S. B.; SHARMA, P.; MANOJ, N.; VATSA, R. K.; BHARADWAJ, S. R. Bimetallic Wiregauze Supported Pt-Ru Nanocatalysts for Hydrogen Mitigation. Journal of Nanoscience and Nanotechnology, Volume 15, Number 5, May 2015, pp. 3522-3529(8). American Scientific Publishers. https://doi.org/10.1166/jnn.2015.9862

[18] ŁOMOT, D.; KARPIŃSKI, Z. Catalytic activity of Pd-Ni in the oxidation of hydrogen for the safety of nuclear power plant. Polish Journal of Chemical Technology, 18, 1, 15—18, 10.1515/pjct-2016-0003 Pol. J. Chem. Tech., Vol. 18, No. 1, 2016 15. DOI: https://doi.org/10.1515/pjct-2016-0003.

[19] LALIK, E.; KOSYDAR, R.; TOKARZ-SOBIERAJ, R.; WITKO, M.; SZUMEŁDA, T.; KOŁODZIEJ, M.; ROJEK, W.; MACHEJ, T.; BIELAŃSKA, E.; DRELINKIEWICZ, A. Humidity induced deactivation of Al2O3 and SiO2 supported Pd, Pt, Pd-Pt catalysts in H2+O2 recombination reaction: The catalytic, microcalorimetric and DFT studies. Applied Catalysis A: General. Volume 501. 2015. Pages 27-40. ISSN 0926-860X. https://doi.org/10.1016/j.apcata.2015.04.029.

[20] ŁOMOT, D., KARPIŃSKI, Z. Hydrogen oxidation over alumina-supported palladium–nickel catalysts. Research on Chemical Intermediates, 41, 9171–9179 (2015). https://doi.org/10.1007/s11164-015-1935-3

[21] JO, S.; JIN, J.; KWON, S. The preparation of a metal foam support of Pt/Al2O3 for combustion of hydrogen. Catalysis Today. Volume 155, Issues 1–2. 2010. Pages 45-50. ISSN 0920-5861. https://doi.org/10.1016/j.cattod.2009.04.021.

[22] LALIK, E.; DRELINKIEWICZ, A.; KOSYDAR, R.; ROJEK, W.; MACHEJ, T.; GURGUL, J.; SZUMEŁDA, T.; KOŁODZIEJ, M.; BIELAŃSKA E. Activity and deactivation of Pd/Al2O3 catalysts in hydrogen and oxygen recombination reaction; a role of alkali (Li, Cs) dopant. International Journal of Hydrogen Energy. Volume 40, Issue 46. 2015. Pages 16127-16136. ISSN 0360-3199. https://doi.org/10.1016/j.ijhydene.2015.09.079.

[23] CHENG, B.; KIM, Y. J.; CHOU, P. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding. Nuclear Engineering and Technology, Volume 48, Issue 1, 2016, Pages 16-25, ISSN 1738-5733. https://doi.org/10.1016/j.net.2015.12.003

[24] KIM, I. H.; JUNG, Y. I.; KIM H. G.; JANG, J. I. Oxidation-resistant coating of FeCrAl on Zr-alloy tubes using 3D printing direct energy deposition. Surface & Coatings Technology 411 (2021) 126915. https://doi.org/10.1016/j.surfcoat.2021.126915.

[25] ALRAISI, A.; LEE, Y. Y. S.; ALAMERI, S. A.; QASEM, M.; PAIK C. Y.; JANG, C. Effects of ATF cladding properties on PWR responses to an SBO accident: A sensitivity analysis. Annals of Nuclear Energy. Volume 165. 2022. 108784. ISSN 0306-4549. https://doi.org/10.1016/j.anucene.2021.108784.

[26] KIM, H. G.; KIM, I. H.; JUNG, Y. I.; PARK, D. J.; PARK, J. Y.; KOO, Y. H. Microstructure and Mechanical Strength of Surface Ods Treated Zircaloy-4 Sheet Using Laser Beam Scanning. Nuclear Engineering and Technology. Volume 46, Issue 4. 2014. Pages 521-528. ISSN 1738-5733. https://doi.org/10.5516/NET.07.2014.027.

[27] FENG, W; JIANGPING, D.; MENG, Z. Y.; et al. The preparation and performance of graphene oxide-doped UO2 pellets [DS/OL]. V1. Science Data Bank, 2024[2025-04-28]. https://cstr.cn/31253.11.sciencedb.hjs.00010. CSTR:31253.11.sciencedb.hjs.00010.

[28] CARMACK, W.J.; PORTER, D.L. et al. Metallic fuels for advanced reactors, Journal of Nuclear Materials, Volume 392, Issue 2, 2009, Pages 139-150, ISSN 0022-3115, https://doi.org/10.1016/j.jnucmat.2009.03.007.

Downloads

Publicado

21-05-2025

Como Citar

Usinas Nucleares: Avanços Recentes em Segurança. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4B (Suppl.), p. e2612, 2025. DOI: 10.15392/2319-0612.2024.2612. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2612. Acesso em: 16 jul. 2025.