Nuclear Power Plants: Recent Advances Towards to Safety

Authors

  • Dr. Lorenzo De Micheli IPEN - Instituto de Pesquisas Energéticas e Nucleares https://orcid.org/0000-0003-4383-2248
  • Dr. Claudia Giovedi IPEN - Instituto de Pesquisas Energéticas e Nucleares
  • Alfredo Y. Abe IPEN - Instituto de Pesquisas Energéticas e Nucleares
  • Dr. Almir Oliveira Neto IPEN - Instituto de Pesquisas Energéticas e Nucleares

DOI:

https://doi.org/10.15392/2319-0612.2024.2612

Keywords:

Small Modular Reactors (SMRs), Accident Tolerant Fuels (ATFs), Renewable Energy

Abstract

The Fukushima Daiichi accident in 2011 significantly impacted the licensing process for nuclear power plants (NPPs) due to the necessity to mitigate the hydrogen generation from the reaction between water/steam and zirconium-based alloy cladding material. Small modular reactors (SMRs) have emerged as a safer alternative, incorporating passive safety systems and design simplifications to mitigate risks. SMRs also offer advantages such as modular construction, reduced costs, and the ability to generate electricity and heat for various applications. However, challenges remain, including public perception, high costs, and the risk of proliferation. To address these challenges, ongoing research and development efforts focus on combustible gas management, accident tolerant fuels (ATFs), and computational simulations to optimize SMR designs and ensure their safety and sustainability.

Downloads

Download data is not yet available.

References

[1] HUSSEIN, E. M. A. “Emerging small modular nuclear power reactors: A critical review”, Physics Open 5 (2020) 100038. https://doi.org/10.1016/j.physo.2020.100038 DOI: https://doi.org/10.1016/j.physo.2020.100038

[2] Vinoya, C.L.; Ubando, A.T.; Culaba, A.B.; Chen, W.-H. State-of-the-Art Review of Small Modular Reactors. Energies 2023, 16, 3224. https://doi.org/10.3390/en16073224 DOI: https://doi.org/10.3390/en16073224

[3] Ashoori, S.; Gates, I. D. Small modular nuclear reactors. A pathway to cost savings and environmental progress in SAGD operations. Next Energy, 4, 100128. (2024). DOI: https://doi.org/10.1016/j.nxener.2024.100128

[4] Zou, Z.; Wang, F.; Deng, J.; Zhang; H.; Zhang, M.; Peng, H.; Qin, H. Hydrogen hazard mitigation in small modular reactor during SBO severe accident using GASFLOW-MPI. Progress in Nuclear Energy, 147, 104193. (2022). DOI: https://doi.org/10.1016/j.pnucene.2022.104193

[5] IAEA, Advances in small modular reactor technology developments, in: International Atomic Energy Agency, A Supplement to: IAEA Advanced Reactors Information System (ARIS), 2016. https://aris.iaea.org/Publications/SMR-Book _2016.pdf

[6] INGERSOLL, D T. Small Modular Reactors: Nuclear Power Fad or Future? Woodhead Publishing Series in Energy: Number 90. Woodhead Publishing is an imprint of Elsevier. ISBN: 978-0-08-100268-1 (online)

[7] International Atomic Energy Agency, Mitigation of Hydrogen Hazards in Water Cooled Power Reactors, IAEA-TECDOC-1196, IAEA, Vienna (2001). ISSN 1011–4289. https://www.iaea.org/publications/search/type/tecdoc-series

[8] International Atomic Energy Agency. Small Modular Reactors: Advances in SMR Developments 2024. https://doi.org/10.61092/iaea.3o4h-svum DOI: https://doi.org/10.61092/iaea.3o4h-svum

[9] KIM, H. G.; KIM, I. H.; JUNG, Y. I.; PARK, D. J.; PARK, J. Y.; KOO, Y. H. Microstructure and Mechanical Strength of Surface Ods Treated Zircaloy-4 Sheet Using Laser Beam Scanning. Nuclear Engineering and Technology. Volume 46, Issue 4. 2014. Pages 521-528. ISSN 1738-5733. https://doi.org/10.5516/NET.07.2014.027. (https://www.sciencedirect.com/science/article/pii/S1738573315301200)

[10] AVELAR, A. M.; MOURÃO, M. B.; MATURANA, M.; GIOVEDI, C.; ABE, A. Y.; PEDRASSANI, R.; SU, J. On the nuclear safety improvement by post-inerting small modular reactor with stainless steel cladding. Annals of Nuclear Energy. Volume 149. 2020. 107775. ISSN 0306-4549. https://doi.org/10.1016/j.anucene.2020.107775. DOI: https://doi.org/10.1016/j.anucene.2020.107775

[11] MIGNACCA, B.; LOCATELLI, G.; SAINATI, T. Deeds not words: Barriers and remedies for Small Modular nuclear Reactors. Energy, Volume 206, 2020, 118137, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2020.118137. DOI: https://doi.org/10.1016/j.energy.2020.118137

[12] KIM, P.; CHIRAYATH, S. S. Assessing the nuclear weapons proliferation risks in nuclear energy newcomer countries: The case of small modular reactors. Nuclear Engineering and Technology. Volume 56, Issue 8. 2024. Pages 3155-3166. ISSN 1738-5733. https://doi.org/10.1016/j.net.2024.03.016. DOI: https://doi.org/10.1016/j.net.2024.03.016

[13] International Atomic Energy Agency, “Developments in the Analysis and Management of Combustible Gases in Severe Accidents in Water Cooled Reactors following the Fukushima Daiichi Accident”, IAEA-TECDOC-1939, IAEA, Vienna (2020). https://www.iaea.org/publications/search/type/tecdoc-series

[14] GREENE, G.A.; FINFROCK, C.; BURSON, S.B. Phenomenological studies on molten core-concrete interactions. Nuclear Engineering and Design. Volume 108, Issues 1–2, 1988, Pages 167-177, ISSN 0029-5493, https://doi.org/10.1016/0029-5493(88)90063-5. DOI: https://doi.org/10.1016/0029-5493(88)90063-5

[15] CHUANG, K.T.; SEDDON, W. A.; QUAIATTINI, R. J.; PUISSANT, L. J. “Safe Recombination of Hydrogen and Oxygen with Wetproofed Catalysts”, Int'l Symposium on Hydrogen Systems, Beijing, China, May 1985, Beijing Info. Centre, Beijing (1985). https://doi.org/10.1016/B978-1-4832-8375-3.50106-5 DOI: https://doi.org/10.1016/B978-1-4832-8375-3.50106-5

[16] POLSHETTIWAR V.; VARMA, R. S. (2010) Green chemistry by nanocatalysis. Green Chem 12:743–754. https://doi.org/10.1039/B921171C DOI: https://doi.org/10.1039/b921171c

[17] SANAP, K. K.; VARMA, S.; WAGHMODE, S. B.; SHARMA, P.; MANOJ, N.; VATSA, R. K.; BHARADWAJ, S. R. Bimetallic Wiregauze Supported Pt-Ru Nanocatalysts for Hydrogen Mitigation. Journal of Nanoscience and Nanotechnology, Volume 15, Number 5, May 2015, pp. 3522-3529(8). American Scientific Publishers. https://doi.org/10.1166/jnn.2015.9862 DOI: https://doi.org/10.1166/jnn.2015.9862

[18] ŁOMOT, D.; KARPIŃSKI, Z. Catalytic activity of Pd-Ni in the oxidation of hydrogen for the safety of nuclear power plant. Polish Journal of Chemical Technology, 18, 1, 15—18, 10.1515/pjct-2016-0003 Pol. J. Chem. Tech., Vol. 18, No. 1, 2016 15. DOI: https://doi.org/10.1515/pjct-2016-0003. DOI: https://doi.org/10.1515/pjct-2016-0003

[19] LALIK, E.; KOSYDAR, R.; TOKARZ-SOBIERAJ, R.; WITKO, M.; SZUMEŁDA, T.; KOŁODZIEJ, M.; ROJEK, W.; MACHEJ, T.; BIELAŃSKA, E.; DRELINKIEWICZ, A. Humidity induced deactivation of Al2O3 and SiO2 supported Pd, Pt, Pd-Pt catalysts in H2+O2 recombination reaction: The catalytic, microcalorimetric and DFT studies. Applied Catalysis A: General. Volume 501. 2015. Pages 27-40. ISSN 0926-860X. https://doi.org/10.1016/j.apcata.2015.04.029. DOI: https://doi.org/10.1016/j.apcata.2015.04.029

[20] ŁOMOT, D., KARPIŃSKI, Z. Hydrogen oxidation over alumina-supported palladium–nickel catalysts. Research on Chemical Intermediates, 41, 9171–9179 (2015). https://doi.org/10.1007/s11164-015-1935-3 DOI: https://doi.org/10.1007/s11164-015-1935-3

[21] JO, S.; JIN, J.; KWON, S. The preparation of a metal foam support of Pt/Al2O3 for combustion of hydrogen. Catalysis Today. Volume 155, Issues 1–2. 2010. Pages 45-50. ISSN 0920-5861. https://doi.org/10.1016/j.cattod.2009.04.021. DOI: https://doi.org/10.1016/j.cattod.2009.04.021

[22] LALIK, E.; DRELINKIEWICZ, A.; KOSYDAR, R.; ROJEK, W.; MACHEJ, T.; GURGUL, J.; SZUMEŁDA, T.; KOŁODZIEJ, M.; BIELAŃSKA E. Activity and deactivation of Pd/Al2O3 catalysts in hydrogen and oxygen recombination reaction; a role of alkali (Li, Cs) dopant. International Journal of Hydrogen Energy. Volume 40, Issue 46. 2015. Pages 16127-16136. ISSN 0360-3199. https://doi.org/10.1016/j.ijhydene.2015.09.079. DOI: https://doi.org/10.1016/j.ijhydene.2015.09.079

[23] CHENG, B.; KIM, Y. J.; CHOU, P. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding. Nuclear Engineering and Technology, Volume 48, Issue 1, 2016, Pages 16-25, ISSN 1738-5733. https://doi.org/10.1016/j.net.2015.12.003 DOI: https://doi.org/10.1016/j.net.2015.12.003

[24] KIM, I. H.; JUNG, Y. I.; KIM H. G.; JANG, J. I. Oxidation-resistant coating of FeCrAl on Zr-alloy tubes using 3D printing direct energy deposition. Surface & Coatings Technology 411 (2021) 126915. https://doi.org/10.1016/j.surfcoat.2021.126915. DOI: https://doi.org/10.1016/j.surfcoat.2021.126915

[25] ALRAISI, A.; LEE, Y. Y. S.; ALAMERI, S. A.; QASEM, M.; PAIK C. Y.; JANG, C. Effects of ATF cladding properties on PWR responses to an SBO accident: A sensitivity analysis. Annals of Nuclear Energy. Volume 165. 2022. 108784. ISSN 0306-4549. https://doi.org/10.1016/j.anucene.2021.108784. DOI: https://doi.org/10.1016/j.anucene.2021.108784

[26] KIM, H. G.; KIM, I. H.; JUNG, Y. I.; PARK, D. J.; PARK, J. Y.; KOO, Y. H. Microstructure and Mechanical Strength of Surface Ods Treated Zircaloy-4 Sheet Using Laser Beam Scanning. Nuclear Engineering and Technology. Volume 46, Issue 4. 2014. Pages 521-528. ISSN 1738-5733. https://doi.org/10.5516/NET.07.2014.027. DOI: https://doi.org/10.5516/NET.07.2014.027

[27] FENG, W; JIANGPING, D.; MENG, Z. Y.; et al. The preparation and performance of graphene oxide-doped UO2 pellets [DS/OL]. V1. Science Data Bank, 2024[2025-04-28]. https://cstr.cn/31253.11.sciencedb.hjs.00010. CSTR:31253.11.sciencedb.hjs.00010.

[28] CARMACK, W.J.; PORTER, D.L. et al. Metallic fuels for advanced reactors, Journal of Nuclear Materials, Volume 392, Issue 2, 2009, Pages 139-150, ISSN 0022-3115, https://doi.org/10.1016/j.jnucmat.2009.03.007. DOI: https://doi.org/10.1016/j.jnucmat.2009.03.007

Downloads

Published

2025-05-21

How to Cite

Nuclear Power Plants: Recent Advances Towards to Safety. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4B (Suppl.), p. e2612, 2025. DOI: 10.15392/2319-0612.2024.2612. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2612. Acesso em: 22 may. 2025.