Evaluation of the spatial variability of the elements in tree barks used as biomonitors of atmospheric pollution
DOI:
https://doi.org/10.15392/bjrs.v9i1A.1386Keywords:
Air pollution, Biomonitoring, Tree barks, Neutron Activation AnalysisAbstract
Tree barks have proven to be a valuable source of information on air quality. Nowadays, studies with this biomonitor are constantly being developed. However, data of several factors that affect the accumulation of the pollutants in the barks, such as bark porosity, duration of the deposition on the bark and dispersion or variability of pollutants in a defined area, are scarce in the literature. The aim of this study was to evaluate the spatial variability of chemical elements concentrations accumulated on Sibipiruna (Cenostigna pluviosarum) barks in order to examine their aerial dispersion in two small urban areas of the Metropolitan Area of São Paulo. The neutron activation analysis (NAA) applied in the analyses consisted of irradiation the aliquots of the sample together the synthetic element standards at the IEA-R1 nuclear reactor. Concentrations of the As, Br, Ca, Co, Cr, Cs, Fe, K, La, Mn, Rb, Sb, Sc, V and Zn were determined in tree barks using short and long irradiations. Results obtained in the analyses of the tree bark samples indicated that the variability of element concentrations depends on the element, study area and numbers of trees. The variability of element concentrations in general was higher for elements presenting low concentrations. Quality control of the analytical results was evaluated by the analysis of INCT-MPH-2 Mixed Polish Herbs Certified Reference Material and these results presented good accuracy with values of standardized difference or |ζ score| ≤ 2, indicating that the procedure of NAA applied is suitable for the analyses.
- Views: 158
- PDF Downloads: 164
Downloads
References
LU, J. G. Air pollution: A systematic review of its psychological, economic, and social effects. Curr Opin Psychol, v. 32, p. 52–65, 2020.
WHO – World Health Organization. Ambient air pollution: a global assessment of exposure and burden of disease, Geneva: WHO, 2016. 121 p.
MARKERT, B. Definitions and principles for bioindication and biomonitoring of trace metals in the environment. J Trace Elem Med Biol, v. 21, p. 77-820, 2007.
FUGA, A.; SAIKI, M.; MARCELLI, M.; SALDIVA, P. P. H. N. Atmospheric pollutants monitoring by analysis of epiphytic lichens. Environ Pollut, v. 151, p. 334-340, 2007.
KOCH, N. M.; BRANQUINHO, C.; MATOS, P.; PINHO, P.; LUCHETA, F.; MARTINS, S. M. A.; VARGAS, V. M. F. The application of lichens as ecological surrogates of air pollution in the subtropics: a case study in South Brazil. Environ Sci Pollut Res, v. 23, p. 20819–20834, 2016.
CAMPOS, C. F.; CAMPOS JÚNIOR, E. O. C.; SOUTO, H. N.; SOUSA, E. F.; PEREIRA, B. B. Biomonitoring of the environmental genotoxic potential of emissions from a complex of ceramic industries in Monte Carmelo, Minas Gerais, Brazil, using Tradescantia pallida. J Toxicol Environ Health A, v. 79, p. 123–128, 2016.
SPOSITO, J. C. V.; CRISPIM, B. A.; ROMÃN, A. I.; MUSSURY, R. M.; PEREIRA, J. G.; SENO, L. O.; GRISOLIA, A. B. Evaluation the urban atmospheric conditions in different cities using comet and micronuclei assay in Tradescantia pallida. Chemosphere, v. 175, p. 108–113, 2017.
LOURENÇO, L. F. A.; MOREIRA, T. C. L.; SOUZA, V. C. O.; BARBOSA JÚNIOR, F.; SAIKI, M.; SALDIVA, P. H. N.; MAUAD, T. The influence of atmospheric particles on the elemental content of vegetables in urban gardens of São Paulo. Environ Pollut, v. 216, p. 125–134, 2016.
GUSTAVSON, P. C.; FERNANDES, F. F.; ALVES, E. S.; VICTORIO, M. P.; MOURA, B.; DOMINGOS, M.; RODRIGUES, C. A.; RIBEIRO, A. P.; NIEVOLA, C. C.; FIGUEIREDO, A. M. G. Tillandsia usneoides: a successful alternative for biomonitoring changes in air quality due to a new highway in São Paulo. Environ Sci Pollut Res, v. 23, p. 1779–1788, 2016.
FERREIRA, A. B.; SANTOS, J. O.; SOUZA, S. O.; JÚNIOR, W. N. S.; ALVES, J. P. H. Use of passive biomonitoring to evaluate the environmental impact of emissions from cement industries in Sergipe State, northeast Brazil. Microchem J, v. 103, p. 15–20, 2012.
GURGATZ, B. M.; OLIVEIRA, R. C.; OLIVEIRA, D. C.; JOUCOSKI, E.; ANTONIACONI, G.; SALDIVA, P. H. N.; Reis, R. A. Atmospheric metal pollutants and environmental injustice: A methodological approach to environmental risk analysis using fuzzy logic and tree bark. Ecol Indic, v. 71, p. 428-437, 2016.
SANTOS, E. C. Estudo da poluição aérea de elementos químicos pelas análises de cascas de árvore. Dissertação (Mestrado em Tecnologia Nuclear). Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, 2017. 132 p.
CHRABĄSZCZ, M.; MRÓZ, L. Tree bark, a valuable source of information on air quality. Pol J Environ Stud, v. 26, p. 453-466, 2017.
LONGLEY, I.; TUNNO, B.; SOMERVELL, E.; EDWARDS, S.; OLIVARES, G.; GRAY, S.; COULSON, G.; CAMBAL, L.; ROPER, C.; CHUBB, L.; CLOUGHETERY, J. E. Assessment of spatial variability across multiple pollutants in Auckland, New Zealand. Int J Environ Res Public Health, v. 16, p. 1567, 2019.
GURGARTZ, B. M.; OLIVEIRA, R. C.; ANTONIACONI, G.; SALDIVA, P. H. N.; HUERGO, L. F.; REIS, R. A. Spatial distribution of atmospheric pollutants through biomonitoring in tree bark using X-Ray fluorescence. Ecletica Quim J, v. 43, p. 59-64, 2018.
MOREIRA, T. C. L.; OLIVEIRA, R. C.; AMATO, L. F. L.; KANG, C. M.; SALDIVA, P. H. N.; SAIKI, M. Intra-urban biomonitoring: Source apportionment using tree barks to identify air pollution sources. Environ Int, v. 91, p. 271–275, 2016.
MADADZADA, A. I.; BADAWY, W. M.; HAJIYEVA, S. R.; VELIYEVA, Z. T.; HAJIYEV, O. B.; SHVETSOVA, M. S.; FRONTASYEVA, M. V. Assessment of atmospheric deposition of major and trace elements using neutron activation analysis and GIS technology: Baku – Azerbaijan. Microchem J, v. 147, p. 605–614, 2019.
KLOS, A.; ALEKSIAYENAK, Y. A.; ZIEMBIK, Z.; RAJFUR, M.; JERZ, D.; WACLAWEK, M.; FRONTASYEVA, M. V. The use of neutron activation analysis in the biomonitoring of trace element deposition in the Opole province. Ecol Chem Eng, v. 20, p. 677-687, 2013.
COCOZZA, C.; RAVERA, S.; CHRUBINI, P.; LOMBARDI, F.; MARCHETTI, M.; TOGNETTI, R. Integrated biomonitoring of airborne pollutants over space and time using tree rings, bark, leaves and epiphytic lichens. Urban For Urban Green, v. 17, p. 177–191, 2016.
MOREIRA, T. C. L. Biomonitoramento intra-urbano da poluição de origem veicular: utilização da casca de árvore na identificação de fontes de poluição atmosférica. Tese (Doutorado), Faculdade de Medicina, Universidade de São Paulo, 2015. 109 p.
DE SOETE, D.; GILBELS, R.; HOSTE, J. Neutron activation analysis. London: Wiley-Interscience, 1972.
ISO - International Organization for Standardization. ISO 13,528: Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparisons, Geneva: ISO, 2015. 89 p.
INCT - Institute of Nuclear Chemistry and Technology. Polish certified reference material for multielement trace analysis: mixed polish herbs (INCT-MPH-2), Warszawa: INCT, 2002. 4p.
FIGUEIREDO, A. M. G.; NOGUEIRA, C. A.; SAIKI, M.; MILIAN, F. M.; DOMINGOS, M. Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor. Environ Pollut, v. 145, p. 279-292, 2007.
THORPE, A.; HARRISON, R. M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci Total Environ, v. 400, p. 207-282, 2008.
FERREIRA, J. E. V.; PINHEIRO, M. T. S.; DOS SANTOS, W. R. S.; MAIA, R. S. Graphical representation of chemical periodicity of main elements through boxplot. Educ. Quim, v. 27, n. 3, p. 209-216, 2016.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/