A NOVEL COARSE-MESH METHOD APPLIED TO NEUTRON SHIELDING PROBLEMS USING THE MULTIGROUP TRANSPORT THEORY IN DISCRETE ORDINATES FORMULATIONS

Authors

  • Rafael Barbosa Libotte Universidade do Estado do Rio de Janeiro https://orcid.org/0000-0001-8864-7906
  • Hermes Alves Filho Universidade do Estado do Rio de Janeiro
  • Ricardo Carvalho de Barros Universidade do Estado do Rio de Janeiro

DOI:

https://doi.org/10.15392/bjrs.v8i3A.1421

Keywords:

neutron transport theory, mathematical modelling, discrete ordinates, neutron shielding, fixedsource calculations, deterministic computational neutronic.

Abstract

In this paper, we propose a new deterministic numerical methodology to solve the one-dimensional linearized Boltzmann equation applied to neutron shielding problems (fixed-source), using the transport equation in the discrete ordinates formulation (SN) considering the multigroup theory. This is a hybrid methodology, entitled Modified Spectral Deterministic Method (SDM-M), that derives from the Spectral Deterministic Method (SDM) and Diamond Difference (DD) methods. This modification in the SDM method aims to calculate neutron scalar fluxes with lower computational cost. Two model-problems are solved using the SDM-M, and the results are compared to the coarse-mesh methods SDM, Spectral Green's Function (SGF) and Response Matrix (RM), and the fine-mesh method DD. The numerical results were obtained in the programming language JAVA version 1.8.0_91.

Downloads

Download data is not yet available.

References

LEWIS, E. E.; MILLER, W. F. Computational methods of neutron transport. Wiley, NewYork & United States of America, 1993.

DUDESTADT, J. J.; HAMILTON, L. J. Nuclear reactor analysis. Wiley, New York & United States of America, 1976.

OLIVA, A. M. Método Espectral Determinístico para a solução de problemas de transporte de nêutrons usando a formulação das ordenadas discretas, Tese de Doutorado, Universidade do Estado do Rio de Janeiro,

OLIVA, A. M.; ALVES FILHO, H.; SILVA, D. J.; GARCIA, C. R.. The spectral nodal method applied to multigroup SN neutron transport problems in one-dimensional geometry with fixedsource. Progress in Nuclear Energy, v. 22, p. 106-113, 2018.

BARROS, R. C. A Spectral Nodal Method for the Solution of Discrete Ordinates Problems in one and two Dimensional Cartesian Geometry. PhD Thesis, The University of Michigan, 1990.

BARROS, R. C.; LARSEN, E. W. A spectral nodal method for one-group X, Y-geometry discrete ordinates problems. Nuclear Science and Engineering, v. 111, p. 34-45, 1992.

DA SILVA, O. P. Um método de Matrix Resposta para cálculos de transporte multigrupos de energia na formulação de ordenadas discretas em meios não-multiplicativos. Tese de Doutorado, Universidade do Estado do Rio de Janeiro, 2018.

BENASSI, M. COTTA, R. M., Siewert, C. E. The PN Method for Radiative Transfer Problems with Reflective Boundary Conditions, Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 30, pp. 547_553, 1983.

BARICHELLO, L. B; GARCIA, R. D. M.; SIEWERT, C. E. A Spherical Harmonics Solution For Radiative-Transfer Problems With Reflecting Boundaries And Internal Sources, Journal of Quantitative Spectroscopy and Radiative Transfer, v. 60, no. 2, p. 247-260, 1998.

BARICHELLO, L. B.; SIEWERT, C. E.. A Discrete Ordinates Solution For A Non-Grey Model With Complete Frequency Redistribution. Journal of Quantitative Spectroscopy and Radiative Transfer, v. 62, p. 665-675, 1999.

VARGAS, R.;VILHENA, M. T. A closed-form solution for one-dimensional radiative condutive problem by the decomposition and LTSn methods. Journal of Quantitative Spectroscopy and Radiative Transfer, v. 61, p. 303-308, 1999.

Downloads

Published

2021-02-09

How to Cite

Libotte, R. B., Alves Filho, H., & de Barros, R. C. (2021). A NOVEL COARSE-MESH METHOD APPLIED TO NEUTRON SHIELDING PROBLEMS USING THE MULTIGROUP TRANSPORT THEORY IN DISCRETE ORDINATES FORMULATIONS. Brazilian Journal of Radiation Sciences, 8(3A (Suppl.). https://doi.org/10.15392/bjrs.v8i3A.1421

Issue

Section

XXI Meeting on Nuclear Reactor Physics and Thermal Hydraulics (XXI ENFIR) and VI ENIN