Core parametric study for enhancing the radioisotope production in the IEA-R1 research reactor

Authors

  • Giovanni Laranjo Stefani Universidade Federal do Rio de Janeiro - UFRJ http://orcid.org/0000-0001-5968-3510
  • Frederico Antônio Genezini
  • Thiago Augusto Santos
  • João Manoel de Losada Moreira

DOI:

https://doi.org/10.15392/bjrs.v9i2B.1516

Keywords:

IEA-R1, research reactor, radioisotope production

Abstract

In this work a parametric study was carried to increase the production of radioisotopes in the IEA-R1 research reactor. The changes proposed to implement in the IEA-R1 reactor core were the substitution of graphite reflectors by beryllium reflectors, the removal of 4 fuel elements to reduce the core size and make available 4 additional locations to be occupied by radioisotope irradiation devices. The key variable analyzed is the thermal neutron flux in the irradiation devices.  The proposed configuration with 20 fuel elements in an approximately cylindrical geometry provided higher average neutron flux (average increment of 12.9 %) allowing higher radioisotope production capability. In addition, it provided 4 more positions to install  irradiation devices which allow a larger number of simultaneous irradiations practically doubling the capacity of radioisotope production in the IEA-R1 reactor. The insertion of Be reflector elements in the core has to be studied carefully since it tends to promote strong neutron flux redistribution in the core. A verification of design and safety parameters of the proposed  core was carried out. The annual fuel consumption will increase about 17 % and more storage space for spent fuel will be required.   

Downloads

Download data is not yet available.

Author Biography

Giovanni Laranjo Stefani, Universidade Federal do Rio de Janeiro - UFRJ

Professor Adjunto do Departamento de Engenharia Nuclear - Escola Politécnica

References

“Uma crise anunciada: pode faltar molibdênio-99 em 2016”, Associação Brasileira de Energia Nuclear (ABEN), <http://www.aben.com.br/revista-brasil-nuclear/edicao-n-42/especial_12>, ac-cess in 31/07/2019.

“RMB e a produção de radiofármacos” - Comissão Nacional de Energia Nuclear (CNEN), <http://www.cnen.gov.br/radiofarmacos>, access in 31/07/2019.

“Reator Multipropósito Brasileiro”, AMAZUL, <https://www.marinha.mil.br/amazul/acesso-a-informacao/acoes-e-programas/programas/reator-multiproposito-brasileiro>, access in 31/07/2019.

“Reator IEA-R1” - Instituto de Pesquisas Energéticas e Nucleares (IPEN), < https://www.ipen.br>, access in 31/07/2019.

Yamaguchi, M., Mendonça, A. G., Santos, A. e Osso, J. A., “Perspectiva de produção de 99Mo via captura radioativa no 98Mo utilizando o reator IEA-R1 a 5MW operando continuamente a 5 dias por semana” – Anais do XI ENFIR, Poços de Caldas, 1997.

Ricci Filho, W., Moreira, J. M. L. Estudo sobre a produção de Mo no reator IEA-R1m utilizando um irradiador de berílio. Congresso Geral de Energia Nuclear, Belo Horizonte, Conference 7. Aug 31-Sept3, 1999.

Stefani, G., de Genezini, F., Moreira, J. M. L., dos Santos, T. A. A. Optimization on the core of IEA-R1 research reactor for enhance the radioisotopes production. International Nuclear Atlantic Conference, Santos, SP, Oct 21-25, 2019.

Terremoto, L. A. A. Fundamentos de tecnologia nuclear – Reatores, Instituto de Pesquisas Energéticas e Nucleares, 2004. Accessed in https://social.stoa.usp.br/articles/0016/2630 /TNR5764-AP.pdf, in 31/01/2019.

Duderstadt, J. J. and Hamilton, L. J. Nuclear Reactor Analysis, pag. 502 (thermal-hydraulic analysis, pag. 537 (reactivity control), pag. 556 (inherent reactivity effects), pag. 568 (xenon poisoning), pag. 580 (fuel depletion), Ed. John Wiley & Sons, 1976.

Pintaud, M. F., Moreira, J. M. L., dos Santos, A. Experimento de operação contínua do reator IEA-R1. Congresso Geral de Energia Nuclear, Rio de Janeiro, Aug 28-Set 2, 1994.

Moreira, J., Lee, J. C. Accuracy of the modal-local method for reactivity determination. Nuclear Science and Engineering 98, 244-254, 1988.

Moreira, J., Lee, J. C. Space-time analysis of reactor control-rod worth measurements. Nuclear Science and Engineering 86, 91, 1984.

Personal information from the CRPq operation team. Centro do Reator de Pesquisa, Instituto de Pesquisas Energétias e Nucleares, São Paulo, 2019.

Leppanen, J., Pusa, M., Viitanen, T., Valtavirta, V., Kaltiaisenaho, T., “The Serpent Monte Carlo code: Status, development and applications in 2013”. Annals of Nuclear Energy 82, pp.142-150, 2015.

“SERPENT – a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code - User’s Manual”, Leppanen, J., June 18 2015. available at: http://montecarlo.vtt.fi/ access in 31/07/2019.

Chao, J. COBRA-3C/RERTR - A Thermal-Hydraulic Subchannel Code with Low Pressure Capabilities. Computer Program. Supplement - Argonne National Laboratory. 1983.

Rodrigues, A. C. I., “Estudo e projeto de novos cestos com boro para o armazenamento de elementos combustíveis queimados do reator IEA-R1”, Master's Thesis, IPEN, 2016.

Downloads

Published

2021-07-25

How to Cite

Stefani, G. L., Genezini, F. A., Santos, T. A., & Moreira, J. M. de L. (2021). Core parametric study for enhancing the radioisotope production in the IEA-R1 research reactor. Brazilian Journal of Radiation Sciences, 9(2B (Suppl.). https://doi.org/10.15392/bjrs.v9i2B.1516

Issue

Section

XXI Meeting on Nuclear Reactor Physics and Thermal Hydraulics (XXI ENFIR) and VI ENIN

Most read articles by the same author(s)

<< < 1 2