State-of-the-art techniques in radiation dosimetry – technological segments and applications

Authors

  • Adriana de Souza Medeiros Batista Departamento de Anatomia e Imagem, Faculdade de Medicina, Universidade Federal de Minas Gerais.

DOI:

https://doi.org/10.15392/bjrs.v9i3.1701

Keywords:

Dosimetry, Dosimetric systems, patent, state of the technique, Questel Orbit.

Abstract

This work presents a study based on patent filings as a resource for identifying technological trends in the field of radiation dosimetry for a view of the state-of-the- art techniques, in addition to the main actors involved and patent search process in the area of ionizing radiation. It aimed to make an analysis of patent portfolios to outline an application scenario for the knowledge developed in the area. It was carried out through consultation using the Questel Orbit search and analysis system having the word “dosimetry” and its similars, by semantic similarity, for the years between 1999-2019. The results are discussed regarding the main deposits, depositors, time evolution, technological segments and geographic coverage. They point out that companies that operate simultaneously in the area of energy power generation and medical applications have a significant contribution to the production of patents. Studies focused on the development of dosimetric systems move several technological segments, mainly environmental and medical technology.

Downloads

Download data is not yet available.

Author Biography

Adriana de Souza Medeiros Batista, Departamento de Anatomia e Imagem, Faculdade de Medicina, Universidade Federal de Minas Gerais.

Professora do Departamento de Anatomia e Imagem, Faculdade de Medicina da Universidade Federal de Minas Gerais. Professora permanente do Programa de Pós-graduação em Ciências e Técnicas Nucleares do Departamento de Engenharia Nuclear, PCTN-UFMG.

References

MATSUBARA, K. Computed tomography dosimetry: from basic to state-of-the-art techniques. Med Phys, v. 5, 2017.

ABAZA, A. New trend in radiation dosimeters. Am J Mod Phys, v. 7, n. 1, p. 21-30, 2018.

MCEWEN, M.; MILLER, A.; PAZOS, I; SHARPE, P. Determination of a consensus scaling factor to convert a Co-60-based alanine dose reading to yield the dose delivered in a high energy electron beam. Radiat Phys Chem, v. 171, p. 108673, 2020.

PANGH, B.; KHABAZ, R.; IZADPANAH, A. Measurement of outdoor and indoor ambient gamma dose rate in Gorgan and Bandar-Torkman cities using gas and thermoluminescent dosimeters. Iran J Health Environ, v. 12, n. 3, p. 397-408, 2019.

DURAGKAR, A.; MULEY, A.; PAWAR, N. R.; CHOPRA, V.; DHOBLE, N. S.; CHIMANKAR, O. P.; DHOBLE, S. J. Versatility of thermoluminescence materials and radiation dosimetry – A review. Luminescence, v. 34, n. 7, p. 656-665, 2019.

FERREIRA, N. S. A. As pesquisas denominadas "estado da arte". Educ Soc, v. 23, n. 79, p. 257-272, 2002.

SALES, M. N.; DE MAGALHÃES PORTO, C. A importância da proteção patentária para o desenvolvimento tecnológico na área de biocombustíveis. Rev Âmbito Juríd, v. 95, 2011.

RAINATTO, G. C.; SILVA, O. R.; PASCHOAL, D. G.; ANDRADE, A. A.; SILVA, F. Análise do Ambiente Informacional no Processo de Patente Brasileiro. Rev de Ciências Gerenciais, v. 23, n. 38, p. 160-169, 2019.

VINCENT, C. L.; SINGH, V.; CHAKRABORT, K.; GOPALAKRISHNAN, A. Patent data mining in fisheries sector: An analysis using Questel-Orbit and Espacenet. World Pat Inf, v. 51, p. 22-30, 2017.

HU, S.; JIANG, T. Artificial intelligence technology challenges patent laws. In: 2019 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). IEEE, 2019. p. 241-244.

TAHMOORESNEJAD, L.; BEAUDRY, C. Capturing the economic value of triadic patents. Scientometrics, v. 118, n. 1, p. 127-157, 2019.

MARK S. A.; R. CRAIG Y. OSL sensor having a reflective backing. U.S. Patent n. 9,329,277 B2, May 3, 2016.

NODA, T.; TANAZAWA, T.; YOSHIDA, H. Westinghouse technologies and integration with Toshiba. Toshiba Rebyu, v. 62, n. 11, p. 32-35, 2007.

KO, Y. K.; PARK, Y. R. Exploring the Medical Device Industry: A Historical Approach of Medison’s Competitive Growth Strategy. East-West Studies, v. 28, n. 2, p. 5-29, 2016.

CROFT, S.; WEAVER, D. R. The additivity of the fast neutron and gamma-ray induced radiophotoluminescence and re-usability of Toshiba FD-7 and SEI High-Z RPL glass dosimeters. Int. J. Rad. Appl. Instr. A., v. 43, n. 5, p. 605-608, 1992.

RICHTER, C.; KALUZE, M.; KARSCH, L.; SCHLENVOIGT, H. P.; SCHURER, M.; SOBIELLA, M.; WOITHE, J.; PAWELKE, J. Dosimetry of laser-accelerated electron beams used for in vitro cell irradiation experiments. Radiat Meas, v. 46, n. 12, p. 2006-2009, 2011.

MAGALHÃES, C. M. S.; SOBRINHO, M. L.; SOUZA, D. N.; ANTONIO FILHO, J.; SILVA JR,. E. F.; SANTOS, L. A. P. A novel dosimetry system for computed tomography using phototransistor. Radiat Meas, v. 47, n. 1, p. 30-33, 2012.

PATLE, A.; PATIL, R. R.; KULKARNI, M. S.; BHATT, B. C.; MOHARIL, S. V. Highly sensitive Europium doped SrSO4 OSL nanophosphor for radiation dosimetry applications. Opt Mater, v. 48, p. 185-189, 2015.

GERKE, H. C.; HINTON, T. G.; TAKASE, T.; ANDERSON, D.; NANBA, K.; BEASLEY, J. C. Radiocesium concentrations and GPS-coupled dosimetry in Fukushima snakes. Sci Total Environ, v. 734, p. 1-12, 2020.

LAZO, S. A. Speaking of dividends: Landauer pumps payout to 4.3%. Barron's, v. 82, n. 45, p. 35-35, 2002.

CHOI, Y. H.; LIM, K. M.; JUN, I.; KEUM, D. K.; HAN, M. H. Radioecological studies in Korea atomic energy research institute, KAERI. Radiat Prot Dosim, v. 146, n. 1-3, p. 287-290, 2011.

GANDY, T. H.; SARGUNAS, V.; SINGH, A.; TADURI, S.; THIEFAIN, P.; AMEEN, M. S.; RATHMELL, R. Charging effects on medium current implanter on CMOS and mixed signal IC's. In: Ion Implantation Technology. 2002. Proceedings of the 14th International Conference on. IEEE, 2002, p. 299-302.

SANO, M.; HARADA, M.; KABASAWA, M.; SATO, F.; SUGITANI, P. Dose monitoring of heavy ion implantation by Therma-Wave signal. In: Ion Implantation Technology. 2002. Proceedings of the 14th International Conference on. IEEE, 2002, p. 248-251.

CURRENT, M. I. Ion implantation of advanced silicon devices: Past, present and future. Mater Sci Semicond Process, v. 62, p. 13-22, 2017.

TIJSSEN, R. H.; PHILIPPENS, M. E.; PAULSON, E. S.;GLITZNER, M.; CHUGH, B.; WETSCHEREK, A.; DUBEC, M.; WANG, J.; VAN DER HEIDE, U. A. MRI commissioning of 1.5 T MR-linac systems–a multi-institutional study. Radiother Oncol, v. 132, p. 114-120, 2019.

HALL, W. A. et al. The transformation of radiation oncology using real-time magnetic resonance guidance: A review. Eur J Cancer, v. 122, p. 42-52, 2019.

KOOREMAN, E. S.; VAN HOUD; NOWEE, M. E.; VAN PELT, V. W.; TIJSSEN, R.H.; PAULSON, E. S.; GURNEY-CHAMPION, O. J.; WANG, J.; KOETSVELD, F.; VAN BUUREN, L. D.; TER BEEK, L. C.; VAN DER HEIDE, U. A. Feasibility and accuracy of quantitative imaging on a 1.5 T MR-linear accelerator. Radiother Oncol, v. 133, p. 156-162, 2019.

RAAYMAKERS, B.; J. W. LAGENDIJK, J. J. W. Radiotherapeutic apparatus with integrated magnetic resonance imaging apparatus. WO 2006/097274 A1, 21 september 2006.

GERKE, H. C; HINTON, T. G.; TAKASE, T.; ANDERSON, D.; NANBA, K.; BEASLEY, J. C. Radiocesium concentrations and GPS-coupled dosimetry in Fukushima snakes. Sci Total Environ, p. 139389, 2020.

DEVOLPI, A. Radiation-monitoring system with correlated hodoscopes. U.S. Patent n. 9,268,043, 23 fev. 2016.

CAI, J. Method for radiation monitoring. U.S. Patent n. 8,912,030, 16 dez. 2014.

MARIELLA J. R; RAYMOND, P.; DARDENNE, Y. M. Nuclear radiation cleanup and uranium prospecting. U.S. Patent n. 9,250,353, 2 fev. 2016.

KAMAL, S. M. Developing Suitable Sensitive Compound Semiconductor Materials Doped by Transition Metals for Occupational Thermoluminescence Dosimetry. Advance Mat Phys Chem, v. 6, n. 4, p. 77-84, 2016.

YANAGIDA, T.; OKADA, G.; KAWAGUCHI, N. Ionizing-radiation-induced storage-luminescence for dosimetric applications. J Lumin, v. 207, p. 14-21, 2019.

MAGNE, S.; RANCHOUX, G. BOUVET, J. Energy compensation, wide beam width radiation sensor, for remote dosimetry, and dosimetry device using this sensor. US Patent 2003/0057385 A1, 27 march 2003.

BEAULIEU, L.; LESSARD, F.; BEDDAR, S. Methods for validating plastic scintillating detectors and applications of same. US Patent 2013/0304409 A1, 14 november 2013.

BEDDAR A. S.; BRIENE, T. M.; ARCHAMBAULT, L. Real-time in vivo radiation dosimetry using scintillation detector. US Patent 9907980 B2, 6 march 2018.

POATE, J. M.; SAADATMAND, K. Ion beam technologies in the semiconductor world (plenary). Rev Sci Instrum, v. 73, n. 2, p. 868-872, 2002.

RUBIN, L.; POATE, J. Ion implantation in silicon technology. Industrial Physicist, v. 9, n. 3, p. 12-15, 2003.

NIAN, V. Technology perspectives from 1950 to 2100 and policy implications for the global nuclear power industry. Prog Nucl Energy, v. 105, p. 83-98, 2018.

LACHAINE, M. E.; LATHUILIERE, F.; MOREAU, M. Image guidance for radiation therapy. U.S. Patent n. 9,974,977, 22 maio 2018.

ZEDTWITZ, V. M.; GASSMANN, O. Market versus technology drive in R&D internationalization: four different patterns of managing research and development. Res policy, v. 31, n. 4, p. 569-588, 2002.

LIMA, D. D.; LACERDA, D. P.; SELLITTO, M. A. Systemic analysis of the Brazilian production chain of semiconductors: graphic representation and leverage points. Syst Pract Action Res, v. 30, n. 3, p. 295-316, 2017.

UEDA, M.; BERNI, L. A.; ROSSI, J. O.; BARROSO, J. J.; GOMES, G. F.; BELOTO, A. F.; ABRAMOF, E. Plasma immersion ion implantation experiments at the Instituto Nacional de Pesquisas Espaciais (INPE), Brazil. Surf Coat Technol, v. 136, n. 1-3, p. 28-31, 2001.

MEDINA, N. H.; SILVEIRA, M. A. G.; ADDED, N.; AGUIAR, V. A. P.; GIACOMINI, R.; MACCHIONE, E. L. A.; MELO, M. A. A.; SANTOS, R. B. B.; SEIXAS JR., L. E. First successful SEE measurements with heavy ions in Brazil. In: 2014 IEEE Radiation Effects Data Workshop (REDW). IEEE, 2014, p. 1-3.

GOMES, S. S.; DOTTO, R.; SILVA, M.; CARRILHO, L.; PALHEIROS, F; SADDE, L; FARIA, E. Desenvolvimento de um elemento combustível avançado tipo PWR 16X16 para Angra 1 chamado 16NGF. In: 2005 International Nuclear Atlantic Conference – INAC 2005, Santos, SP, Brasil, 2005.

DAVID, J. K. Método para monitorar a distribuição de energia dentro de um núcleo de um reator de água pressurizado. Patente BR 112012027775 A2, 08 de agosto de 2017.

BRIOT, J. P. La recherche scientifique en France, le rôle du CNRS et la coorération scientifique avec le Brésil. Culture juridique française pour les Brésiliens, p. 1-10, 2015.

HYDER, A. S.; FREGIDOU-MALAMA, M. Is context important in healthcare marketing?: A comparison between developed and emerging markets. In: The 8th meeting of the IMP Group in Asia and 34th meeting of IMP Group 'Networks in Context', 2nd-5th December 2018, Negombo, Sri Lanka, 2018.

WINKEL, D.; BOL, G. H.; KROON, P. S.; VAN ASSELEN, B.; HACKETT, S. S.; WERENSTEIJN-HONINGH, A. M.; RAAYMAKERS, B. W. Adaptive radiotherapy: the Elekta Unity MR-linac concept. Clin Transl Oncol, v. 18, p. 54-59, 2019.

UHLEMANN, F. Dosímetro, aparelho terapêutico e produto de programa de computador. BR 1120130054069 A2, 07 de fevereiro de 2020.

Downloads

Published

2021-09-20

How to Cite

Batista, A. de S. M. (2021). State-of-the-art techniques in radiation dosimetry – technological segments and applications. Brazilian Journal of Radiation Sciences, 9(3). https://doi.org/10.15392/bjrs.v9i3.1701

Issue

Section

Articles

Most read articles by the same author(s)