Attenuation properties of common 3D printed FFF plastics for mammographic applications

Authors

  • Marcus Oliveira Federal Institute of Bahia, Salvador (BA)
  • Matheus Savi Federal Institute of Education, Science and Technology of Santa Catarina – IFSC
  • Marco Andrade Federal Institute of Education, Science and Technology of Santa Catarina – IFSC
  • Daniel Villani Instituto de Pesquisas Energéticas e Nucleares – IPEN/CNEN – USP
  • Maria da Penha Albuquerque Potiens Instituto de Pesquisas Energéticas e Nucleares – IPEN/CNEN – USP
  • Hector Stuani Instituto de Pesquisas Energéticas e Nucleares – IPEN/CNEN – USP
  • Carlos Ubeda Universidad Taparacá
  • Sibusiso Mdletshe The University of Auckland

DOI:

https://doi.org/10.15392/bjrs.v10i1.1732

Keywords:

3D printed materials, X-ray attenuation, Breast tissues equivalency.

Abstract

 The aim of this study was to evaluate the feasibility of using acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) 3D printing filaments as materials for mammography phantom construction, comparing their attenuation properties at two different set-ups: at a Calibration Laboratory and directly to a mammography unit. The attenuation of 3D printed test phantoms of two types of common 3D printing Fused Filament Fabrication (FFF) filaments (ABS and PLA) were characterized in comparison with polymethylmethacrylate (PMMA). The measurements were carried out with standard IEC 61267 X-rays, using RQR 2-M and RQR 4-M beam qualities at the Instruments Calibration Laboratory, and then applied to a mammography unit, with measurements with 28 kVp and 35 kVp. Attenuation characteristics evaluated indicates the suitable equivalence of PLA to PMMA for 3D printing breast tissue equivalent complex phantoms. The plastic materials used in this study suggest that the FFF technique may be suitable for mammography phantom development.

Downloads

Download data is not yet available.

Author Biographies

Marcus Oliveira, Federal Institute of Bahia, Salvador (BA)

Department of Technology Health and Biology,

Matheus Savi, Federal Institute of Education, Science and Technology of Santa Catarina – IFSC

Department of Health and Services

Marco Andrade, Federal Institute of Education, Science and Technology of Santa Catarina – IFSC

Department of Health and Services

Daniel Villani, Instituto de Pesquisas Energéticas e Nucleares – IPEN/CNEN – USP

Radiation Metrology Center

Maria da Penha Albuquerque Potiens, Instituto de Pesquisas Energéticas e Nucleares – IPEN/CNEN – USP

Radiation Metrology Center

Hector Stuani, Instituto de Pesquisas Energéticas e Nucleares – IPEN/CNEN – USP

Radiation Metrology Center

Carlos Ubeda, Universidad Taparacá

Medical Technology Department, Health Sciences Faculty

Sibusiso Mdletshe, The University of Auckland

Faculty of Medical and Health Sciences, Department of Anatomy and Medical Imaging

References

ACR. Mammography quality control manual. Reston: American College of Radiology 1999

DEWERD, L. A., WOCHOS, J., & CAMERON, J. ACR phantom based upon a random phantom ‘‘Wisconsin mammography phantoms’’. In W. Logan & E. P. Muntz (Eds.), Reduced dose mammography. New York: Masson. 1979

POLETTI, M. E., GONÇALVES, O. D., & MAZZARO, I. X-ray scattering from human breast tissues and breast-equivalent materials. Phys Med Biol,v. 47, p. 47–63. 2002 DOI: https://doi.org/10.1088/0031-9155/47/1/304

DEWERD, LARRY A. The phantoms of medical and health physics. Ed. Michael Kissick. Berlin: Springer, 2014. DOI: https://doi.org/10.1007/978-1-4614-8304-5

WHITE, D. R. Formulation of tissue substitute materials using basic interaction data. Phys Med Biol, v. 22, p.889–899, 1977. DOI: https://doi.org/10.1088/0031-9155/22/5/008

WHITE, D. R., R. V. GRIFFITH, AND I. J. WILSON. ICRU reports." Reports of the International Commission on Radiation Units and Measurements v.1, p. 203-205, 1992. DOI: https://doi.org/10.1093/jicru_os24.1.203

HAMMERSTEIN, G. R., MILLER, D. W., WHITE, D. R., MASTERSON, M. E., WOODARD, H. Q., & LAUGHLIN, J. S. Absorbed radiation-dose in mammography. Radiology, v.130,p. 485–491, 1979. DOI: https://doi.org/10.1148/130.2.485

WOODARD, H. Q., & WHITE, D. R. The composition of body-tissues. Br. J. Radiol., v.59, p.1209–1219, 1986. DOI: https://doi.org/10.1259/0007-1285-59-708-1209

SCULPTEO. The state of 3D printing. Ed 2018 2018:1–30. Available at: https://info.sculpteo.com/the-state-of-3d-printing-2018. Last accessed: 04 Aug. 2021

PAXTON N, SMOLAN W, BÖCK T, MELCHELS F, GROLL J, JUNGST T. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication v. 9, p. 044107,2017 https://doi.org/10.1088/1758-5090/aa8dd8. DOI: https://doi.org/10.1088/1758-5090/aa8dd8

OZBOLAT IT, HOSPODIUK M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials, v. 76, p.321–43, 2016 https://doi.org/10.1016/j.biomaterials.2015.10.076. DOI: https://doi.org/10.1016/j.biomaterials.2015.10.076

OGDEN KM, MORABITO KE, DEPEW PK. 3D printed testing aids for radiographic quality control. J Appl Clin Med Phys v.20, p.127–34, 2019 https://doi.org/10.1002/acm2.12574. DOI: https://doi.org/10.1002/acm2.12574

OLIVEIRA M, BARROS JC, UBEDA C. Development of a 3D printed quality control tool for evaluation of x-ray beam alignment and collimation. Phys Medica. v.65, p.29-32, 2019 https://doi.org/10.1016/j.ejmp.2019.07.026. DOI: https://doi.org/10.1016/j.ejmp.2019.07.026

MILLER MA, HUTCHINS GD. Development of anatomically realistic PET and PET/CT phantoms with rapid prototyping technology. IEEE Nucl Sci Symp Conf Rec,v.6, p. 4252–7, 2007. https://doi.org/10.1109/NSSMIC.2007.4437056. DOI: https://doi.org/10.1109/NSSMIC.2007.4437056

BIENIOSEK MF, LEE BJ, LEVIN CS. Technical Note: Characterization of custom 3D printed multimodality imaging phantoms. Med Phys v. 42, p .5913–8, 2015 https://doi.org/10.1118/1.4930803. DOI: https://doi.org/10.1118/1.4930803

HUNT DC, EASTON H, CALDWELL CB. Design and construction of a quality control phantom for SPECT and PET imaging. Med Phys, v.36,p. 5404–11, 2009 https://doi.org/10.1118/1.3250855. DOI: https://doi.org/10.1118/1.3250855

KIM MJ, LEE SR, LEE MY, SOHN JW, YUN HG, CHOI JY, et al. Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy. PLoS One, v.12, p.1–12, 2017 https://doi.org/10.1371/journal.pone.0176227. DOI: https://doi.org/10.1371/journal.pone.0176227

VILLANI, D., O. RODRIGUES JR, AND L. L. CAMPOS. Dosimetric characterization of 3D printed phantoms at different infill percentages for diagnostic X-ray energy range. Radiat Phys Chem, v. 172,p. 108728, 2020. DOI: https://doi.org/10.1016/j.radphyschem.2020.108728

SAVI M, ANDRADE MAB, POTIENS MPA. Commercial filament testing for use in 3D printed phantoms. Radiat Phys Chem. v.107, p.108906, 2020 https://doi.org/10.1016/J.RADPHYSCHEM.2020.108906. DOI: https://doi.org/10.1016/j.radphyschem.2020.108906

IVANOV D, BLIZNAKOVA K, BULIEV I, POPOV P, METTIVIER G, RUSSO P, et al. Suitability of low density materials for 3D printing of physical breast phantoms. Phys Med Biol 2018;63:175020. https://doi.org/10.1088/1361-6560/aad315. DOI: https://doi.org/10.1088/1361-6560/aad315

KIARASHI N, RAVIN CE, NOLTE AC, STURGEON GM, SEGARS WP, NOLTE LW, et al. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data; Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data. Med Phys v.42, p. 4116, 2015 https://doi.org/10.1118/1.4919771. DOI: https://doi.org/10.1118/1.4919771

MAINPRIZE J, CARTON A-K, KLAUSZ R, LI Z, MULLER SL, HUNTER DM, et al. Development of a physical 3D anthropomorphic breast texture model using selective laser sintering rapid prototype printing. In: Chen G-H, Lo JY, Gilat Schmidt T, editors. Med. Imaging 2018 Phys. Med. Imaging, SPIE; 2018, p. 9. https://doi.org/10.1117/12.2293560. DOI: https://doi.org/10.1117/12.2293560

RUTKOWSKI, J. V.; LEVIN, C. B. Acrylonitrile-Butadiene-Styrene Copolymers (ABS): Pyrolysis and Combustion Products and their Toxicity - A review of the Literature. Fire and Materials, v.10, p.93-105, 1986. DOI: https://doi.org/10.1002/fam.810100303

FRED FISCHER. Themoplastics: The Best Choice for 3D Printing: Why ABS is a Good Choice for 3D Printing and When to use Another Thermoplastic. Available at: https://www.smg3d.co.uk/files/ssys-wp-thermoplastics-09-11_ashx.pdf Last accessed: 04 Aug. 2021.

CASTRO-AGUIRRE, E.; IÑIGUEZ-FRANCO, F.; SAMSUDIN, H.; FANG, X.; AURAS, R. Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, v. 107, p. 333–366, 2016. doi:10.1016/j.addr.2016.03.010. DOI: https://doi.org/10.1016/j.addr.2016.03.010

GIAMMONA, G. and CRAPARO, E. F. "Biomedical applications of polylactide (PLA) and its copolymers." Molecules v.4, p. 980, 2018 https://doi.org/10.3390/molecules23040980. DOI: https://doi.org/10.3390/molecules23040980

KNOLL, Glenn F. Radiation detection and measurement. John Wiley & Sons, 2010. 4th ed.

International Electrotechnical Commission (IEC). Medical diagnostic X-ray equipment – Radiation conditions for use in the determination of characteristics, IEC 61267. 2005.

HUBBELL, J. H., and S. M. Seltzer. X-ray mass attenuation coefficients. NIST Standard Reference Database v. 126, p. 2004,2019.

TURNER, Brian N.; GOLD, Scott A. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyping Journal, v. 21, p. 250–261, 2015. doi:10.1108/RPJ-02-2013-0017. DOI: https://doi.org/10.1108/RPJ-02-2013-0017

MALLIORI A, DASKALAKI A, DERMITZAKIS A, PALLIKARAKIS N. Development of Physical Breast Phantoms for X-ray Imaging Employing 3D Printing Techniques. Open Med Imaging J v.12, p.1–10. 2020 https://doi.org/10.2174/1874347102012010001. DOI: https://doi.org/10.2174/1874347102012010001

FERADOV F, MARINOV S, BLIZNAKOVA K. Physical Breast Phantom Dedicated for Mammography Studies. In: Henriques J, Neves N, de Carvalho P, editors. XV Mediterr. Conf. Med. Biol. Eng. Comput. MEDICON 2019, Cham: Springer International Publishing, p. 344–52, 2020. https://doi.org/10.1007/978-3-030-31635-8_41 DOI: https://doi.org/10.1007/978-3-030-31635-8_41

Downloads

Published

2022-02-18

How to Cite

Oliveira, M., Savi, M., Andrade, M., Villani, D., Potiens, M. da P. A., Stuani, H., Ubeda, C., & Mdletshe, S. (2022). Attenuation properties of common 3D printed FFF plastics for mammographic applications. Brazilian Journal of Radiation Sciences, 10(1). https://doi.org/10.15392/bjrs.v10i1.1732

Issue

Section

Articles

Most read articles by the same author(s)