Development of radiopaque FFF filaments for bone and teeth representation in 3D printed radiological objects
DOI:
https://doi.org/10.15392/bjrs.v10i1.1739Keywords:
3D printing, Fused Filament Fabrication, Radiology, PhantomAbstract
The use of 3D printing technologies is growing widely, including the possibility of design phantoms for imaging and dosimetry. For that, high attenuation tissues such as cortical bone, dentin and enamel need to be mimicked to accurately produce 3D printed phantoms, especially for Fused Filament Fabrication (FFF) printing technology. A Radiopaque FFF filament commercially available had been hard to be found; and this study aims to report, step-by-step, the development of a radiopaque FFF filament. A combination of radiopaque substances (Barium Sulfate - BaSO4 and Calcium Carbonate - CaCO3) was selected using the National Institute of Standards and Technology (NIST) XCOM tool theoretical data and added as filler in an Acrylonitrile Butadiene Styrene (ABS) matrix. The filament was homogenized and gone under first characterizations by analyzing its density, Scanning Electron Microscopy (SEM), Computed Tomography (CT) and micro-CT (µCT) scans. Three filaments were produced with different Hounsfield Units (HU) equivalences: XCT-A (1607HU), XCT-B (1965HU) and XCT-C (2624HU) with respective densities of 1.166(6) g/cm³, 1.211(2) g/cm³ and 1.271(3) g/cm³. With these values, high attenuation tissues, such as bones, dentine and enamel, can now be mimicked with FFF 3D printing technology, at a low cost of production.
- Views: 464
- PDF Downloads: 362
Downloads
References
Mankovich NJ, Lambert T, Zrimec T, Hiller JB. Anatomic vascular phantom for the verification of MRA and XRA visualization and fusion. Med Imaging 1995 Physiol Funct from Multidimens Images 1995;2433:73. https://doi.org/10.1117/12.209724. DOI: https://doi.org/10.1117/12.209724
Alssabbagh et al. Evaluation of nine 3D printing materials as tissue equivalent materials in terms of mass attenuation coefficient and mass density. Int J Adv Appl Sci 2017;4:168–73. https://doi.org/10.21833/ijaas.2017.09.024. DOI: https://doi.org/10.21833/ijaas.2017.09.024
Gear JI, Cummings C, Craig AJ, Divoli A, Long CDC, Tapner M, et al. Abdo-Man: a 3D-printed anthropomorphic phantom for validating quantitative SIRT. EJNMMI Phys 2016;3:17. https://doi.org/10.1186/s40658-016-0151-6. DOI: https://doi.org/10.1186/s40658-016-0151-6
Niebuhr NI, Johnen W, Güldaglar T, Runz A, Echner G, Mann P, et al. Technical Note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy. Med Phys 2016;43:908–16. https://doi.org/10.1118/1.4939874. DOI: https://doi.org/10.1118/1.4939874
Ivanov D, Bliznakova K, Buliev I, Popov P, Mettivier G, Russo P, et al. Suitability of low density materials for 3D printing of physical breast phantoms. Phys Med Biol 2018;63:175020. https://doi.org/10.1088/1361-6560/aad315. DOI: https://doi.org/10.1088/1361-6560/aad315
Sculpteo. The state of 3D printing. Ed 2018 2018:1–30. https://info.sculpteo.com/the-state-of-3d-printing-2018. DOI: https://doi.org/10.1016/B978-0-12-803917-5.00001-8
Tappa K, Jammalamadaka U. Novel Biomaterials Used in Medical 3D Printing Techniques. J Funct Biomater 2018;9:17. https://doi.org/10.3390/jfb9010017. DOI: https://doi.org/10.3390/jfb9010017
Kiarashi N, Ravin CE, Nolte AC, Sturgeon GM, Segars WP, Nolte LW, et al. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data; Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data. Med Phys 2015;42:4116. https://doi.org/10.1118/1.4919771. DOI: https://doi.org/10.1118/1.4919771
Shen S, Cromeens B, Han Y, Dong E, Liu W, Xu R, et al. Freeform fabrication of tissue-simulating phantoms by combining three-dimensional printing and casting. Des Qual Biomed Technol IX 2016;9700:970009. https://doi.org/10.1117/12.2212305. DOI: https://doi.org/10.1117/12.2212305
Beckmann, J. and Popovic, K., 2020. Assessment of the attenuation of metal-infused filaments for 3D printing a gamma camera calibration phantom. Medical Engineering & Physics, 80, pp.60-64. DOI: https://doi.org/10.1016/j.medengphy.2020.04.003
Tino, R., Yeo, A., Brandt, M., Leary, M. and Kron, T., 2021. The interlace deposition method of bone equivalent material extrusion 3D printing for imaging in radiotherapy. Materials & Design, 199, p.109439.
Ceh J, Youd T, Mastrovich Z, Peterson C, Khan S, Sasser TA, et al. Bismuth infusion of ABS enables additive manufacturing of complex radiological phantoms and shielding equipment. Sensors (Switzerland) 2017;17:1–11. https://doi.org/10.3390/s17030459. DOI: https://doi.org/10.3390/s17030459
Tino R, Yeo A, Brandt M, Leary M, Kron T. The interlace deposition method of bone equivalent material extrusion 3D printing for imaging in radiotherapy. Mater Des 2021;199:109439. https://doi.org/10.1016/j.matdes.2020.109439. DOI: https://doi.org/10.1016/j.matdes.2020.109439
Alssabbagh M, Tajuddin AA, Abdulmanap M, Zainon R. Evaluation of 3D printing materials for fabrication of a novel multi-functional 3D thyroid phantom for medical dosimetry and image quality. Radiat Phys Chem 2017;135:106–12. https://doi.org/10.1016/j.radphyschem.2017.02.009. DOI: https://doi.org/10.1016/j.radphyschem.2017.02.009
Dancewicz OL, Sylvander SR, Markwell TS, Crowe SB, Trapp JV. Radiological properties of 3D printed materials in kilovoltage and megavoltage photon beams. Phys Medica 2017;38:111–8. https://doi.org/10.1016/J.EJMP.2017.05.051. DOI: https://doi.org/10.1016/j.ejmp.2017.05.051
Shin J, Sandhu RS, Shih G. Imaging Properties of 3D Printed Materials: Multi-Energy CT of Filament Polymers. J Digit Imaging 2017;30:572–5. https://doi.org/10.1007/s10278-017-9954-9. DOI: https://doi.org/10.1007/s10278-017-9954-9
Savi M, Andrade MAB, Potiens MPA. Commercial filament testing for use in 3D printed phantoms. Radiat Phys Chem 2020:108906. https://doi.org/10.1016/J.RADPHYSCHEM.2020.108906. DOI: https://doi.org/10.1016/j.radphyschem.2020.108906
Resnik R., Kircos LT, Misch C. Diagnostic Imaging and Techniques In: Contemporary Implant Dentistry. 3rd ed. St. Louis: Mosby Elsevier; n.d.
Sahai S, Kaveriappa S, Arora H, BharatAggarwal2. 3-D imaging in post-traumatic malformation and eruptive disturbance in permanent incisors : a case report 2011;22:473–7. https://doi.org/10.1111/j.1600-9657.2011.01038.x. DOI: https://doi.org/10.1111/j.1600-9657.2011.01038.x
Sakuma A, Saitoh H, Makino Y, Inokuchi G, Hayakawa M, Yajima D, et al. Three-dimensional visualization of composite fillings for dental identification using CT images. Dentomaxillofacial Radiol 2012;41:515–9. https://doi.org/10.1259/dmfr/13441277. DOI: https://doi.org/10.1259/dmfr/13441277
Borges MS, Mucha JN. Bone density assessment for mini-implants position. Dental Press J Orthod 2010;15:58–60. DOI: https://doi.org/10.1590/S2176-94512010000600007
Hazelaar C, van Eijnatten M, Dahele M, Wolff J, Forouzanfar T, Slotman B, et al. Using 3D printing techniques to create an anthropomorphic thorax phantom for medical imaging purposes. Med Phys 2018;45:92–100. https://doi.org/10.1002/mp.12644. DOI: https://doi.org/10.1002/mp.12644
Li Y, Li Z, Ammanuel S, Gillan D, Shah V. Efficacy of using a 3D printed lumbosacral spine phantom in improving trainee proficiency and confidence in CT-guided spine procedures. 3D Print Med 2018;4. https://doi.org/10.1186/s41205-018-0031-x. DOI: https://doi.org/10.1186/s41205-018-0031-x
Alhosseini Hamedani B, Melvin A, Vaheesan K, Gadani S, Pereira K, Hall AF, et al. Three-dimensional printing CT-derived objects with controllable radiopacity 2018;19:317–28. https://doi.org/10.1002/acm2.12278. DOI: https://doi.org/10.1002/acm2.12278
Price G, Biglin ER, Collins S, Aitkinhead A, Subiel A, Chadwick AL, et al. An open source heterogeneous 3D printed mouse phantom utilising a novel bone representative thermoplastic. Phys Med Biol 2020;65. https://doi.org/10.1088/1361-6560/ab8078. DOI: https://doi.org/10.1088/1361-6560/ab8078
Styrolution I. Technical datasheet: Terluran GP-35 2016;49:49–51. https://www.ineos-styrolution.com/INTERSHOP/web/WFS/Styrolution-Portal-Site/en_US/-/USD/ViewPDF-Print.pdf?SKU=300600120829&RenderPageType=ProductDetail (accessed February 1, 2020). DOI: https://doi.org/10.4067/S0718-85602016000100006
Threepopnatkul, P., W. Teppinta, and N. Sombatsompop. "Effect of co-monomer ratio in ABS and wood content on processing and properties in wood/ABS composites." Fibers and Polymers 12.8 (2011): 1007-1013. DOI: https://doi.org/10.1007/s12221-011-1007-2
Berger, M.J., Hubbell, J.H., Seltzer, S.M., Chang, J., Coursey, J.S., Sukumar, R., Zucker, D.S., and Olsen K. XCOM: Photon Cross Section Database (version 1.5) 2010.
Physikalisch-Technische Bundesanstalt. Radiation qualities used for studies in radiation protection 2015.
White DR, Booz J, Griffith R V., Spokas JJ, Wilson IJ. Report 44. J Int Comm Radiat Units Meas 1989;os23:NP-NP. https://doi.org/10.1093/jicru/os23.1.report44. DOI: https://doi.org/10.1093/jicru/os23.1.Report44
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res 2019;47:D1102–9. https://doi.org/10.1093/nar/gky1033. DOI: https://doi.org/10.1093/nar/gky1033
Valor A, Reguera E, Sa´nchez-Sinencio F. Synthesis and X-ray diffraction study of calcium salts of some carboxylic acids. Powder Diffr 2002;17:13–8. https://doi.org/10.1154/1.1414011. DOI: https://doi.org/10.1154/1.1414011
CRC Handbook of Chemistry and Physics, 93rd Edition Haynes, William M., ed., CRC Press, 2012, 2664 pp., hard cover | Sigma-Aldrich n.d. https://www.sigmaaldrich.com/catalog/product/aldrich/z763241?lang=pt®ion=BR&gclid=CjwKCAjw6fCCBhBNEiwAem5SO5jtdxFiiAOq_SflL5A8IMn7PVViGOYjGNesjtsaj9NJ0K28M8jSbxoCDQYQAvD_BwE (accessed March 25, 2021).
ICRP. ICRP 110: Annexes A-D. Ann ICRP 2009;39:47–70. https://doi.org/10.1016/j.icrp.2009.07.005. DOI: https://doi.org/10.1016/j.icrp.2009.07.005
Computed Tomography: Principles, Design, Artifacts, and Recent Advances, Second Edition | (2009) | Hsieh | Publications | Spie n.d. https://spie.org/Publications/Book/2049426?SSO=1 (accessed March 25, 2021).
Todd DB. Improving incorporation of fillers in plastics. A special report. Adv Polym Technol 2000;19:54–64. https://doi.org/10.1002/(SICI)1098-2329(20000117)19:1<54::AID-ADV6>3.0.CO;2-#. DOI: https://doi.org/10.1002/(SICI)1098-2329(20000117)19:1<54::AID-ADV6>3.0.CO;2-#
Xu XG, Eckerman KF, editors. Handbook of anatomical models for radiation dosimetry. 1st ed. CRC Press; 2010. DOI: https://doi.org/10.1201/EBK1420059793
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/