Plastic bottle caps as radiation detectors for high gamma radiation doses
DOI:
https://doi.org/10.15392/bjrs.v10i2A.1761Keywords:
Plastic samples, Radiation dosimetry, PCR analyses, FTIR techniqueAbstract
Dosimetric evaluation is indicated for material characterization seeking to identify possible applications; still, proper preprocessing techniques are critical features of this process. This work aimed to determine the linearity response of plastic samples irradiated with gamma rays using the Fourier Transform Infrared (FTIR) measurements. The plastic samples were analyzed using Derivatives and Principal Component Analysis (PCA) methods. They applied linear and Principal Component Regression (PCR) methods to obtain linearity. The methods obtained good results for linearity and also showed the evolution of each technique. In conclusion, the results indicate that the applied methods can be useful in radiation physics and for plastic samples as interesting potential radiation detectors.
- Views: 235
- PDF Downloads: 262
Downloads
References
LEE, C.K.; WONG, H.K.; LEUNG, Y.L. Non-linearity of pre-dose response and its effects on TL dating. Radiation Measurements 2009; 44:215–22. DOI: https://doi.org/10.1016/j.radmeas.2009.03.030
MADDEN, L.; ARCHER, J.; LI, E.; JELEN, U.; DONG, B.; HOLLOWAY, L.; et al. MRI-LINAC beam profile measurements using a plastic scintillation dosimeter. Physica Medica 2020;73:111–6. DOI: https://doi.org/10.1016/j.ejmp.2020.04.016
POSAR, J.A.; DAVIS, J.; BRACE, O.; SELLIN, P.; GRIFFITH, M.J.; DHEZ, O.; et al. Characterization of a plastic dosimeter based on organic semiconductor photodiodes and scintil-lator. Physics and Imaging in Radiation Oncology 2020; 14:48–52. DOI: https://doi.org/10.1016/j.phro.2020.05.007
SOHRABPOUR, M.; KAZEMI, A.A.; MOUSAVI, H.; SOLATI, K. Temperature response of a number of plastic dosimeters for radiation processing. Radiation Physics and Chemistry 1993; 42:783–7. DOI: https://doi.org/10.1016/0969-806X(93)90373-3
WUU, C.S.; XU, Y. 3-D dosimetry with optical CT scanning of polymer gels and radiochro-mic plastic dosimeter. Radiation Measurements. 2011, 46, 1903–7. DOI: https://doi.org/10.1016/j.radmeas.2011.06.010
IHANTOLA, S.; HOLM, P.; JUTILA, H.; PERÄJÄRVI, K. Method for the diagnosis of aged plastic radiation portal monitors. Applied Radiation and Isotopes 2020; 160:109110. DOI: https://doi.org/10.1016/j.apradiso.2020.109110
SERRANO, M.A.; MORENO, J.C. Spectral transmission of solar radiation by plastic and glass materials. Journal of Photochemistry and Photobiology B: Biology 2020; 208:111894. DOI: https://doi.org/10.1016/j.jphotobiol.2020.111894
KOVACEVIC, M.S.; SAVOVIC, S.; DJORDJEVICH, A.; BAJIC, J.; STUPAR, D.; KO-VACEVIC, M.; et al. Measurements of growth and decay of radiation induced attenuation du-ring the irradiation and recovery of plastic optical fibres. Optics and Laser Technology 2013; 47:148–51. DOI: https://doi.org/10.1016/j.optlastec.2012.09.019
AMBROZOVA, I.; BRABCOVA, K.P.; KUBANCAK, J.; ŠLEGL, J.; TOLOCHEK, R.V.; et al. Cosmic radiation monitoring at low-Earth orbit by means of thermoluminescence and plastic nuclear track detectors. Radiation Measurements 2017; 106:262–6. DOI: https://doi.org/10.1016/j.radmeas.2016.12.004
SUHRHOFF, T.J.; SCHOLZ-BÖTTCHER, B.M. Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics - A lab ex-periment. Marine Pollution Bulletin 2016; 102:84–94. DOI: https://doi.org/10.1016/j.marpolbul.2015.11.054
SADOOGHI, P. Transient thermal radiation heat transfer in a reinforced plastic coating with anisotropic optical properties. International Journal of Heat and Mass Transfer 2018; 123:432–6. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.113
KARINA, K.M.; NAPOLITANO, C.M.; BORRELY, S.I. Gamma radiation effects in packa-ging for sterilization of health products and their constituents paper and plastic film. Radiation Physics and Chemistry 2018; 142:23–8. DOI: https://doi.org/10.1016/j.radphyschem.2016.12.019
KIM, D.; LEE, S.; PARK, J.; SON, J.; KIM, T.H.; KIM, Y.H.; et al. Performance of 3D printed plastic scintillators for gamma-ray detection. Nuclear Engineering and Technology 2020, 243, 34-39. DOI: https://doi.org/10.1016/j.net.2020.05.030
Tajudin SM, Namito Y, Sanami T, Hirayama H. Response of plastic scintillator to gamma sources. Applied Radiation and Isotopes 2020; 159:109086. DOI: https://doi.org/10.1016/j.apradiso.2020.109086
AYDIA, M.I.; HIEKAL, A.S.; EL-AZONY, K.M.; MOHAMED, T.Y.; SHAHIN, I.M. Pre-paration and characterization of poly nano-cerium chloride for 99Mo production based on neu-tron activation reactions. Applied Radiation and Isotopes 2020; 163:109211. DOI: https://doi.org/10.1016/j.apradiso.2020.109211
KARELIN, A.I.; KAYUMOV, R.R.; DOBROVOLSKY, Y.A. FTIR spectroscopic study of the interaction between NH 4+ and DMSO in Nafion. Spectrochimica Acta - Part A: Molecu-lar and Biomolecular Spectroscopy 2019; 215:381–8. DOI: https://doi.org/10.1016/j.saa.2019.03.007
KAUR, S.; SINGH, S.; SINGH, L. Opto-electric and physio-chemical changes in oxygen ion irradiated natural Vermiculite mineral. Applied Radiation and Isotopes 2019; 148:7–12. DOI: https://doi.org/10.1016/j.apradiso.2019.03.004
OLIVEIRA, L.N.; SCHIMIDT, F.; ANTONIO, P.L.; ANDREETA, M.R.B.; CALDAS, L.V.E. Lithium diborate glass for high-dose dosimetry using the UV-Vis and FTIR spectro-photometry techniques. Radiation Measurements 2017; 106:225–8. DOI: https://doi.org/10.1016/j.radmeas.2017.05.015
RAMKUMAR, P.L.; PANCHAL, Y.; PANCHAL, D.; GUPTA, N. Characterization of LLDPE/coir blend using FTIR technique. Materials Today: Proceedings 2020, 1, 1-5. DOI: https://doi.org/10.1016/j.matpr.2020.04.819
RIHAWY, M.S.; ALZIER, A.; ALLAF, A.W. Investigation of chloramphenicol release from PVA/CMC/HEA hydrogel using ion beam analysis, UV and FTIR techniques. Applied Ra-diation and Isotopes 2019; 153:108806. DOI: https://doi.org/10.1016/j.apradiso.2019.108806
BALAGHI, S.; GHAL-EH, N.; MOHAMMADI, A.; VEGA-CARRILLO, H.R. A neutron scattering soil moisture measurement system with a linear response. Applied Radiation and Isotopes 2018; 142:167–72. DOI: https://doi.org/10.1016/j.apradiso.2018.10.002
DATZ, H.; HOROWITZ, Y.S.; OSTER, L.; MARGALIOT, M. Critical dose threshold for TL dose response non-linearity: Dependence on the method of analysis: It’s not only the data. Ra-diation Measurements 2011; 46, 1444–7. DOI: https://doi.org/10.1016/j.radmeas.2011.05.026
POMME, S.; PAEPEN, J.; VAN AMMEL, R. Linearity check of an ionisation chamber through 99 mTc half-life measurements. Applied Radiation and Isotopes 2018; 140:171–8. DOI: https://doi.org/10.1016/j.apradiso.2018.07.004
SANI, S.F.A.; OTHMAN, M.H.U.; ALQAHTANI, A.; NAZERI, A.A.Z.A.; ALMUGREN, K.S.; UNG, N.M.; et al. Passive dosimetry of electron irradiated borosilicate glass slides. Ra-diation Physics and Chemistry 2020; 108903. DOI: https://doi.org/10.1016/j.radphyschem.2020.108903
ZAKARIA, Z.; AZIZ, M.Z.A.; ISHAK, N.H.; SUPPIAH, S.; BRADLEY, D.A.; NOOR, N.M. Advanced thermoluminescence dosimetric characterization of fabricated Ge-Doped opti-cal fibres (FGDOFs) for electron beams dosimetry. Radiation Physics and Chemistry 2020; 166:108487. DOI: https://doi.org/10.1016/j.radphyschem.2019.108487
CHEN, S.J.; PENG, C.J.; CHEN, Y.C.; HWANG, Y.R.; LAI, Y.S.; FAN, S.Z.; et al. Com-parison of FFT and marginal spectra of EEG using empirical mode decomposition to monitor anesthesia. Computer Methods and Programs in Biomedicine 2016; 137:77–85. DOI: https://doi.org/10.1016/j.cmpb.2016.08.024
SANCHEZ ROJAS, F.; BOSCH OJEDA, C. Recent development in derivative ultravio-let/visible absorption spectrophotometry: 2004-2008. A review. Analytica Chimica Acta 2009; 635:22–44. DOI: https://doi.org/10.1016/j.aca.2008.12.039
PENG, B.; GAO, C.; ZHOU, Y.; GUO, Y. Temperature-compensated ppb-level sulfur dioxide detection system based on fourier transform ultraviolet differential optical absorption spectrum method. Sensors and Actuators, B: Chemical 2020; 312:127988. DOI: https://doi.org/10.1016/j.snb.2020.127988
FOLCH-FORTUNY, A.; ARTEAGA, F.; FERRER, A. PCA model building with missing data: New proposals and a comparative study. Chemometrics and Intelligent Laboratory Systems 2015; 146:77–88. DOI: https://doi.org/10.1016/j.chemolab.2015.05.006
LEVADA, A.L.M. Parametric PCA for unsupervised metric learning. Pattern Recognition Letters 2020; 135:425–30. DOI: https://doi.org/10.1016/j.patrec.2020.05.011
GHOLIPOUR PEYVANDI, R.; ISLAMI RAD, S.Z. Precise prediction of radiation interac-tion position in plastic rod scintillators using a fast and simple technique: Artificial neural net-work. Nuclear Engineering and Technology 2018; 50:1154–9. DOI: https://doi.org/10.1016/j.net.2018.06.005
AMIT, J.R.; KUMARI, S.; KELLY, S.; CANNAVAN, A.; SINGH, D.K. Rapid detection of pure coconut oil adulteration with fried coconut oil using ATR-FTIR spectroscopy coupled with multivariate regression modelling. LWT 2020; 125:109250. DOI: https://doi.org/10.1016/j.lwt.2020.109250
BATISTA BRAGA, J.W.; ALLEGRINI, F.; OLIVIERI, A.C. Maximum likelihood unfolded principal component regression with residual bilinearization (MLU-PCR/RBL) for second-order multivariate calibration. Chemometrics and Intelligent Laboratory Systems 2017; 170:51–7. DOI: https://doi.org/10.1016/j.chemolab.2017.09.016
LI, X.; ZHANG, C.; BEHRENS, H.; HOLTZ F. Calculating biotite formula from electron mi-croprobe analysis data using a machine learning method based on principal components regres-sion. Lithos 2020; 356–357:105371. DOI: https://doi.org/10.1016/j.lithos.2020.105371
SOLANKI, R.B.; KULKARNI, H.D.; SINGH, S.; VERMA, A.K.; VARDE, P. Optimization of regression model using principal component regression method in passive system reliability assessment. Progress in Nuclear Energy 2018; 103:126–34. DOI: https://doi.org/10.1016/j.pnucene.2017.11.012
URBANSKI, P. Principal component and partial least squares regressions in the calibration of nucleonic gauges. Applied Radiation and Isotopes 1994; 45:659–67. DOI: https://doi.org/10.1016/0969-8043(94)90244-5
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/