Plastic bottle caps as radiation detectors for high gamma radiation doses

Authors

  • Lucas N Oliveira
  • Eriberto O. Nascimento
  • Patricia L. Antonio
  • Linda Caldas

DOI:

https://doi.org/10.15392/bjrs.v10i2A.1761

Keywords:

Plastic samples, Radiation dosimetry, PCR analyses, FTIR technique

Abstract

Dosimetric evaluation is indicated for material characterization seeking to identify possible applications; still, proper preprocessing techniques are critical features of this process. This work aimed to determine the linearity response of plastic samples irradiated with gamma rays using the Fourier Transform Infrared (FTIR) measurements. The plastic samples were analyzed using Derivatives and Principal Component Analysis (PCA) methods. They applied linear and Principal Component Regression (PCR) methods to obtain linearity. The methods obtained good results for linearity and also showed the evolution of each technique. In conclusion, the results indicate that the applied methods can be useful in radiation physics and for plastic samples as interesting potential radiation detectors.

Downloads

Download data is not yet available.

References

LEE, C.K.; WONG, H.K.; LEUNG, Y.L. Non-linearity of pre-dose response and its effects on TL dating. Radiation Measurements 2009; 44:215–22. DOI: https://doi.org/10.1016/j.radmeas.2009.03.030

MADDEN, L.; ARCHER, J.; LI, E.; JELEN, U.; DONG, B.; HOLLOWAY, L.; et al. MRI-LINAC beam profile measurements using a plastic scintillation dosimeter. Physica Medica 2020;73:111–6. DOI: https://doi.org/10.1016/j.ejmp.2020.04.016

POSAR, J.A.; DAVIS, J.; BRACE, O.; SELLIN, P.; GRIFFITH, M.J.; DHEZ, O.; et al. Characterization of a plastic dosimeter based on organic semiconductor photodiodes and scintil-lator. Physics and Imaging in Radiation Oncology 2020; 14:48–52. DOI: https://doi.org/10.1016/j.phro.2020.05.007

SOHRABPOUR, M.; KAZEMI, A.A.; MOUSAVI, H.; SOLATI, K. Temperature response of a number of plastic dosimeters for radiation processing. Radiation Physics and Chemistry 1993; 42:783–7. DOI: https://doi.org/10.1016/0969-806X(93)90373-3

WUU, C.S.; XU, Y. 3-D dosimetry with optical CT scanning of polymer gels and radiochro-mic plastic dosimeter. Radiation Measurements. 2011, 46, 1903–7. DOI: https://doi.org/10.1016/j.radmeas.2011.06.010

IHANTOLA, S.; HOLM, P.; JUTILA, H.; PERÄJÄRVI, K. Method for the diagnosis of aged plastic radiation portal monitors. Applied Radiation and Isotopes 2020; 160:109110. DOI: https://doi.org/10.1016/j.apradiso.2020.109110

SERRANO, M.A.; MORENO, J.C. Spectral transmission of solar radiation by plastic and glass materials. Journal of Photochemistry and Photobiology B: Biology 2020; 208:111894. DOI: https://doi.org/10.1016/j.jphotobiol.2020.111894

KOVACEVIC, M.S.; SAVOVIC, S.; DJORDJEVICH, A.; BAJIC, J.; STUPAR, D.; KO-VACEVIC, M.; et al. Measurements of growth and decay of radiation induced attenuation du-ring the irradiation and recovery of plastic optical fibres. Optics and Laser Technology 2013; 47:148–51. DOI: https://doi.org/10.1016/j.optlastec.2012.09.019

AMBROZOVA, I.; BRABCOVA, K.P.; KUBANCAK, J.; ŠLEGL, J.; TOLOCHEK, R.V.; et al. Cosmic radiation monitoring at low-Earth orbit by means of thermoluminescence and plastic nuclear track detectors. Radiation Measurements 2017; 106:262–6. DOI: https://doi.org/10.1016/j.radmeas.2016.12.004

SUHRHOFF, T.J.; SCHOLZ-BÖTTCHER, B.M. Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics - A lab ex-periment. Marine Pollution Bulletin 2016; 102:84–94. DOI: https://doi.org/10.1016/j.marpolbul.2015.11.054

SADOOGHI, P. Transient thermal radiation heat transfer in a reinforced plastic coating with anisotropic optical properties. International Journal of Heat and Mass Transfer 2018; 123:432–6. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.113

KARINA, K.M.; NAPOLITANO, C.M.; BORRELY, S.I. Gamma radiation effects in packa-ging for sterilization of health products and their constituents paper and plastic film. Radiation Physics and Chemistry 2018; 142:23–8. DOI: https://doi.org/10.1016/j.radphyschem.2016.12.019

KIM, D.; LEE, S.; PARK, J.; SON, J.; KIM, T.H.; KIM, Y.H.; et al. Performance of 3D printed plastic scintillators for gamma-ray detection. Nuclear Engineering and Technology 2020, 243, 34-39. DOI: https://doi.org/10.1016/j.net.2020.05.030

Tajudin SM, Namito Y, Sanami T, Hirayama H. Response of plastic scintillator to gamma sources. Applied Radiation and Isotopes 2020; 159:109086. DOI: https://doi.org/10.1016/j.apradiso.2020.109086

AYDIA, M.I.; HIEKAL, A.S.; EL-AZONY, K.M.; MOHAMED, T.Y.; SHAHIN, I.M. Pre-paration and characterization of poly nano-cerium chloride for 99Mo production based on neu-tron activation reactions. Applied Radiation and Isotopes 2020; 163:109211. DOI: https://doi.org/10.1016/j.apradiso.2020.109211

KARELIN, A.I.; KAYUMOV, R.R.; DOBROVOLSKY, Y.A. FTIR spectroscopic study of the interaction between NH 4+ and DMSO in Nafion. Spectrochimica Acta - Part A: Molecu-lar and Biomolecular Spectroscopy 2019; 215:381–8. DOI: https://doi.org/10.1016/j.saa.2019.03.007

KAUR, S.; SINGH, S.; SINGH, L. Opto-electric and physio-chemical changes in oxygen ion irradiated natural Vermiculite mineral. Applied Radiation and Isotopes 2019; 148:7–12. DOI: https://doi.org/10.1016/j.apradiso.2019.03.004

OLIVEIRA, L.N.; SCHIMIDT, F.; ANTONIO, P.L.; ANDREETA, M.R.B.; CALDAS, L.V.E. Lithium diborate glass for high-dose dosimetry using the UV-Vis and FTIR spectro-photometry techniques. Radiation Measurements 2017; 106:225–8. DOI: https://doi.org/10.1016/j.radmeas.2017.05.015

RAMKUMAR, P.L.; PANCHAL, Y.; PANCHAL, D.; GUPTA, N. Characterization of LLDPE/coir blend using FTIR technique. Materials Today: Proceedings 2020, 1, 1-5. DOI: https://doi.org/10.1016/j.matpr.2020.04.819

RIHAWY, M.S.; ALZIER, A.; ALLAF, A.W. Investigation of chloramphenicol release from PVA/CMC/HEA hydrogel using ion beam analysis, UV and FTIR techniques. Applied Ra-diation and Isotopes 2019; 153:108806. DOI: https://doi.org/10.1016/j.apradiso.2019.108806

BALAGHI, S.; GHAL-EH, N.; MOHAMMADI, A.; VEGA-CARRILLO, H.R. A neutron scattering soil moisture measurement system with a linear response. Applied Radiation and Isotopes 2018; 142:167–72. DOI: https://doi.org/10.1016/j.apradiso.2018.10.002

DATZ, H.; HOROWITZ, Y.S.; OSTER, L.; MARGALIOT, M. Critical dose threshold for TL dose response non-linearity: Dependence on the method of analysis: It’s not only the data. Ra-diation Measurements 2011; 46, 1444–7. DOI: https://doi.org/10.1016/j.radmeas.2011.05.026

POMME, S.; PAEPEN, J.; VAN AMMEL, R. Linearity check of an ionisation chamber through 99 mTc half-life measurements. Applied Radiation and Isotopes 2018; 140:171–8. DOI: https://doi.org/10.1016/j.apradiso.2018.07.004

SANI, S.F.A.; OTHMAN, M.H.U.; ALQAHTANI, A.; NAZERI, A.A.Z.A.; ALMUGREN, K.S.; UNG, N.M.; et al. Passive dosimetry of electron irradiated borosilicate glass slides. Ra-diation Physics and Chemistry 2020; 108903. DOI: https://doi.org/10.1016/j.radphyschem.2020.108903

ZAKARIA, Z.; AZIZ, M.Z.A.; ISHAK, N.H.; SUPPIAH, S.; BRADLEY, D.A.; NOOR, N.M. Advanced thermoluminescence dosimetric characterization of fabricated Ge-Doped opti-cal fibres (FGDOFs) for electron beams dosimetry. Radiation Physics and Chemistry 2020; 166:108487. DOI: https://doi.org/10.1016/j.radphyschem.2019.108487

CHEN, S.J.; PENG, C.J.; CHEN, Y.C.; HWANG, Y.R.; LAI, Y.S.; FAN, S.Z.; et al. Com-parison of FFT and marginal spectra of EEG using empirical mode decomposition to monitor anesthesia. Computer Methods and Programs in Biomedicine 2016; 137:77–85. DOI: https://doi.org/10.1016/j.cmpb.2016.08.024

SANCHEZ ROJAS, F.; BOSCH OJEDA, C. Recent development in derivative ultravio-let/visible absorption spectrophotometry: 2004-2008. A review. Analytica Chimica Acta 2009; 635:22–44. DOI: https://doi.org/10.1016/j.aca.2008.12.039

PENG, B.; GAO, C.; ZHOU, Y.; GUO, Y. Temperature-compensated ppb-level sulfur dioxide detection system based on fourier transform ultraviolet differential optical absorption spectrum method. Sensors and Actuators, B: Chemical 2020; 312:127988. DOI: https://doi.org/10.1016/j.snb.2020.127988

FOLCH-FORTUNY, A.; ARTEAGA, F.; FERRER, A. PCA model building with missing data: New proposals and a comparative study. Chemometrics and Intelligent Laboratory Systems 2015; 146:77–88. DOI: https://doi.org/10.1016/j.chemolab.2015.05.006

LEVADA, A.L.M. Parametric PCA for unsupervised metric learning. Pattern Recognition Letters 2020; 135:425–30. DOI: https://doi.org/10.1016/j.patrec.2020.05.011

GHOLIPOUR PEYVANDI, R.; ISLAMI RAD, S.Z. Precise prediction of radiation interac-tion position in plastic rod scintillators using a fast and simple technique: Artificial neural net-work. Nuclear Engineering and Technology 2018; 50:1154–9. DOI: https://doi.org/10.1016/j.net.2018.06.005

AMIT, J.R.; KUMARI, S.; KELLY, S.; CANNAVAN, A.; SINGH, D.K. Rapid detection of pure coconut oil adulteration with fried coconut oil using ATR-FTIR spectroscopy coupled with multivariate regression modelling. LWT 2020; 125:109250. DOI: https://doi.org/10.1016/j.lwt.2020.109250

BATISTA BRAGA, J.W.; ALLEGRINI, F.; OLIVIERI, A.C. Maximum likelihood unfolded principal component regression with residual bilinearization (MLU-PCR/RBL) for second-order multivariate calibration. Chemometrics and Intelligent Laboratory Systems 2017; 170:51–7. DOI: https://doi.org/10.1016/j.chemolab.2017.09.016

LI, X.; ZHANG, C.; BEHRENS, H.; HOLTZ F. Calculating biotite formula from electron mi-croprobe analysis data using a machine learning method based on principal components regres-sion. Lithos 2020; 356–357:105371. DOI: https://doi.org/10.1016/j.lithos.2020.105371

SOLANKI, R.B.; KULKARNI, H.D.; SINGH, S.; VERMA, A.K.; VARDE, P. Optimization of regression model using principal component regression method in passive system reliability assessment. Progress in Nuclear Energy 2018; 103:126–34. DOI: https://doi.org/10.1016/j.pnucene.2017.11.012

URBANSKI, P. Principal component and partial least squares regressions in the calibration of nucleonic gauges. Applied Radiation and Isotopes 1994; 45:659–67. DOI: https://doi.org/10.1016/0969-8043(94)90244-5

Downloads

Published

2022-07-21

How to Cite

Oliveira, L. N., O. Nascimento, E., L. Antonio, P. ., & V.E. Caldas, L. (2022). Plastic bottle caps as radiation detectors for high gamma radiation doses . Brazilian Journal of Radiation Sciences, 10(2A (Suppl.). https://doi.org/10.15392/bjrs.v10i2A.1761

Most read articles by the same author(s)