Evaluation of diagnostic x-ray equipment performance in lindi and mtwara regions - Tanzania

Authors

  • Wilson Maliyatabu Ngoye Tanzania Atomic Energy Commission(TAEC)
  • Vitus Balobegwa
  • Abdallah A. Kileo
  • Elisha Edmund
  • Fatma O. Khamis
  • Peter H. Mammba

DOI:

https://doi.org/10.15392/bjrs.v10i2.1802

Keywords:

x-ray equipment, Quality Control, Optimization, Quality Imaging

Abstract

The purpose of the study was to evaluate the quality control (QC) tests results of general radiography x-ray equipment in order to assess the performance of the x-ray equipment in comparison to the acceptance limits, hence advise on measures to provide quality diagnostic imaging at optimized dose. QC tests results from health facilities in Mtwara and Lindi regions were evaluated. The QC results from 2015 to 2021 were analyzed for   selected QC parameters which included kV accuracy, kV reproducibility, mAs linearity, beam quality, collimation and beam alignment. All x-ray units passed the kV accuracy, kV reproducibility, and beam quality and beam alignment tests.  It was noticed that the collimation test surfaced among the failed parameters, though the performance of all the tested parameters were within 76.9 %. to 100% of the acceptable limits. Furthermore, lack of QC and maintenance plan was noted. Generally, the performance of most of the x-ray units were in   compliance with regulatory requirements. However, improvement is desirable especially in the areas of QC plan, preventive maintenance and repair. Managers of the facilities need to take heed that optimum equipment       performance is vital if quality imaging at optimized radiation dose is to be realized.

Downloads

Download data is not yet available.

Author Biography

Wilson Maliyatabu Ngoye, Tanzania Atomic Energy Commission(TAEC)

Radiation Health Physics Research Officer

TAEC - DAR ES SALAAM OFFICE

References

Tiwari, R.; Lalrinmawia J.; Pau K.H. An enumeration survey on diagnostic x-ray generators and essential safety parameters in Mizoram, India. Iran J Med Phys,2020, v.17, p.273-281.

Rasuli, B.; Pashazadeh, A. M.; Birgani, M. T.; Ghorbani, M.; Naserpour, M.; Fatahi-As, J. Qual-ity control of conventional radiology devices in selected hospitals of Khuzestan province, Iran. Iranian Journal of Medical Physics, 2015, v.12(2), p.101-108.

Moifo, B.; Edzimbi, A.; Tebere, H.; Tambe, J.; Samba, R.; Fotsin, J. Referring physicians’ knowledge on justification of medical exposure in diagnostic imaging in a Sub-Saharan African country, Cameroon. Open Journal of Radiology, 2014, v.4, p.60-68. doi: 10.4236/ojrad.2014.41008. DOI: https://doi.org/10.4236/ojrad.2014.41008

Alhasan, M.; Abdelrahman, M.; Alewaidat, H.; Khader, Y. Radiation dose awareness of radio-logic technologists in major Jordanian hospitals. Int. J. Radiat. Res, 2016, v.14(2), p.133-138. DOI: https://doi.org/10.18869/acadpub.ijrr.14.2.133

Njikip, C. D.; Manyolp, J. N.; Yigbedeckp, Y. E; Ateba, J. B.; Abou’oup, D. W.; Ndah T. N. Quality control of conventional radiology devices in selected hospitals of the Republic of Cam-eroon. International Journal of Innovative Science, Engineering & Technology, 2018, v.5(3)

Ferrero, A.; Takahashi, N.; Vrtiska, T. J.; Krambeck, A. E.; Lieske, J. C.; McCollough, C. H. Understanding, justifying, and optimizing radiation exposure for CT imaging in nephrourology. Nat Rev Urol., 2019, v.16(4), p.231–244. DOI:10.1038/s41585-019-0148-8. DOI: https://doi.org/10.1038/s41585-019-0148-8

Begum, M.; Mollah, A. S.; Zaman, M. A.; Rahman, A. K. Quality control tests in some diagnos-tic x-ray units in Bangladesh, Bangladesh Journal of Medical Physics, 2011, v. 4, p.59-66 DOI: https://doi.org/10.3329/bjmp.v4i1.14688

Jones, A. K.; Heintz, P.; Geiser, W.; Goldman, L.; Jerjian, K.; Martin, M.; Peck, D.; Pfeiffer, D.; Ranger, N.; Yorkston, J. Ongoing quality control in digital radiography: Report of AAPM imaging physics committee task group 151. Medical Physics, 2015, v.42(11). DOI: https://doi.org/10.1118/1.4932623

Nkuba, L. L.; Nyanda, B. P. Compliance quality control monitoring of diagnostic x-ray facili-ties in Dar es Salaam city, Tanzania. Braz. J. Rad. Sci, 2017, v.5(2), p.1-17 DOI: https://doi.org/10.15392/bjrs.v5i2.255

Ngoye, W. M.; Motto, J. A.; Muhogora, W. E. Quality control in Tanzania: Is it done? Journal of Medical Imaging and Radiation Sciences, 2015, v.46(3), p.S23-S30 DOI: https://doi.org/10.1016/j.jmir.2015.06.004

Kareem, A. A.; Hulugalle, S. N.; Al-Hamadani, H. K. A. quality control test for general x-ray machine, World Scientific News (WSN), 2017, Available online at www.worldscientificnews.com, Accessed 12/03/2020.

U.S. Food and Drug Administration, Code of Federal Regulations title 21, 2019. Available at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=1000.55, Ac-cessed on 6/8/2020.

Sungita, Y. Y.; Mdoe, S. L.; Msaki, P. Diagnostic x-ray facilities as per quality control perfor-mances in Tanzania, Journal of Applied Clinical Medical Physics, 2006, v. 7(4), p.66-73. DOI: https://doi.org/10.1120/jacmp.v7i4.2291

United Republic of Tanzania, Atomic Energy Act No.7 of 2003, Government Publications, Dar es salaam

Ngoye, W. M.; Motto, J. A.; Muhogora, W. E. Challenges facing the implementation of quality control by radiographers in Tanzania. Braz. J. Rad. Sci, 2019, v.7, p.1-14 DOI: https://doi.org/10.15392/bjrs.v7i1.752

Ekpo, E.U.; Egbe, N. O.; Azogor, W.E.; Inyang, S. O.; Upeh, E. R. Challenges of radiological equipment management policies in some northern Nigerian hospitals, The south african radi-ographer, 2013, v. 51, p.19-22

Ismail, H. A; Ali, O.A.; Omer, A. M.; Garelnabi, M. E.; Mustafa N. S. Evaluation of diagnostic radiology department in terms of quality control (QC) of x-ray units at Khartoum State hospi-tals. International Journal of Science and Research, 2015, v. 4, p.1875-1878

World Health Organization, Quality assurance workbook for radiographers & radiological technologists, WHO, Geneva, 2001

Mwalongo, D. A.; Ngaile, J. E.; Sungita Y. Y. Performance evaluation of conversional X-ray machines in Tanzania. Conference Paper,2008.

Akpochafor, M. O.; Soyebi, K. O.; Adeneye, S. O.; Aweda, M. A.; Ajayi, H. B. Assessment of peak kilovoltage accuracy in ten selected x-ray centers in Lagos metropolis, south western Nige-ria: A quality control test to determine energy output accuracy of an x-ray generator. Journal of Health Research and Reviews, 2016, v. 3(2), p. 60-65 DOI: https://doi.org/10.4103/2394-2010.184231

Ciraj, O.; Košutić, D.; Marković, S. Quality control of conventional diagnostic radiology equipment in Serbia and Montenegro. VINČA Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro, 2003. Available at: https://inis.iaea.org/search/search.aspx?orig_q=RN:36097747. Accessed on 11/8/2020.

AAPM Report, Acceptance testing and quality control of dental imaging equipment, The report of AAPM task group 175. AAPM, Alexandria, VA, 2016.

Egbe, N. O.; Inah, G. B.; Azogor, W. E.; Chiaghanam, N. O.; Ikamaise, V. C. Good radio-graphic practice: the Nigerian experience and the CEC recommendations. European Journal of Radiography, 2009, p. 147-150 DOI: https://doi.org/10.1016/j.ejradi.2010.04.002

Downloads

Published

2022-06-13

How to Cite

Ngoye, W. M., Balobegwa, V., A. Kileo, A., Edmund, E., O. Khamis, F., & H. Mammba, P. (2022). Evaluation of diagnostic x-ray equipment performance in lindi and mtwara regions - Tanzania. Brazilian Journal of Radiation Sciences, 10(2). https://doi.org/10.15392/bjrs.v10i2.1802

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)