PSO-based modeling particulate emission rates in nuclear accidents

Authors

  • Douglas Rodriguez Brasil Universidade Federal do Rio de Janeiro - UFRJ
  • Andressa dos Santos Nicolau Universidade Federal do Rio de Janeiro - UFRJ
  • Roberto Schirru Universidade Federal do Rio de Janeiro - UFRJ
  • Cláudio Márcio do Nascimento Abreu Pereira Instituto de Energia Nuclear - IEN

DOI:

https://doi.org/10.15392/2319-0612.2022.1944

Keywords:

Source term, Atmospheric dispersion, Particle Swarm Optimization (PSO), Nuclear accident

Abstract

This paper aims to estimate the rate of particulate contaminants emitted by multiple sources, whose values are unknown, using the values identified by the receptors distributed around the sources. In a nuclear emergency with release of radionuclides into the atmosphere, in order to make the correct decision, it is necessary to identify the source term and its release rate, as well as the meteorological data, essential factors for defining the direction and size of the radioactive plume. For this purpose, a model of Particle Swarm Optimization (PSO) is applied together with a mathematical model of Gaussian dispersion, being created the program Particle Swarm Optimization Dispersion Model (PSODM).

Downloads

Download data is not yet available.

References

OLIVEIRA L. F. S. and BARROSO A. C. O. Um sumário do acidente de Three Mile Island: do instante zero às lições para o futuro. Relatório técnico, COPPE/UFRJ, 1980.

BELLASIO R. and BIANCONI R. RTMOD: an Internet based system to analyze the predictions of long-range atmospheric dispersion models. Computers & Geociences, n. 25, p. 819-833, 1999. DOI: https://doi.org/10.1016/S0098-3004(99)00021-7

PULLEN J., CHANG J. and HANNA S. Air-Sea transport, dispersion, and fate modeling in the vicinity of the Fukushima Nuclear Power Plant. A special conference session summary. American Meteorological Society, january, 2013. DOI: https://doi.org/10.1175/BAMS-D-11-00158.1

CARBON B. Good Practice Guide For Atmospheric Dispersion Modelling. National Institute of Water and Atmospheric Research, Aurora Pacific Limited and Earth Tech Incorporated, Ministry for the Environment, Wellington, New Zealand, 2004.

JANNETTI, P. Air Pollution Modelin, Theories, Computational Methods And Available Software. New York, Springer Science – Business Media, LLC, 1990.

EBERHART R. C. and KENNEDY J. A new optimizer using particle swarm theory. Proc. IEEE int'l conf. on neural networks, v. IV, p. 1942-1948. IEEE service center, Piscataway, NJ. 1995.

STOCKIE, J. M. Mathematics of Atmospheric Dispersion Modelling. SIAM Review, n. 53, p. 349-372, 2011. DOI: https://doi.org/10.1137/10080991X

BRASIL, D. R. Uma Modelagem Baseada no PSO para Estimativas das Taxas de Emissão de Particulados em um Acidente Nuclear. Master's dissertation, COPPE/UFRJ, 2021.

MOREIRA D. and TIRABASSI T. Modelo matemático de dispersão de poluentes na atmosfera: um instrumento técnico para a gestão ambiental. Ambiente e Sociedade, v. VII, n. 2, julho-dezembro, 2004. DOI: https://doi.org/10.1590/S1414-753X2004000200010

ERMAK, D. L. An analytical model for air pollutant transport and deposition from a point source. Atmospheric Environment, v. 11, n. 3, p. 231–237, 1977. DOI: https://doi.org/10.1016/0004-6981(77)90140-8

LUSHI, E. and STOCKIE, J. M. An inverse Gaussian plume approach for estimating contaminant emissions from multiple point sources. Atmospheric Environment, n. 44, p. 1097–1107, 2010. DOI: https://doi.org/10.1016/j.atmosenv.2009.11.039

Downloads

Published

2022-10-29

How to Cite

Rodriguez Brasil, D., dos Santos Nicolau, A., Schirru, R., & Márcio do Nascimento Abreu Pereira, C. (2022). PSO-based modeling particulate emission rates in nuclear accidents. Brazilian Journal of Radiation Sciences, 10(3A (Suppl.). https://doi.org/10.15392/2319-0612.2022.1944

Issue

Section

INAC 2021_XXII ENFIR_VII_ENIN