Validation of the analytical method using the energy dispersive X-ray fluorescence technique (EDXRF) for application in pharmaceutical sciences
DOI:
https://doi.org/10.15392/2319-0612.2022.2080Keywords:
Validation, Energy Dispersive X-Ray Fluorescence (EDXRF) Technique, Heavy metals, Elemental impurities of Classes 1 (Cd, Pb, As, Hg) and 2A (Co, V, Ni)Abstract
The determination of impurities in raw materials intended for the production of pharmaceutical products is important to guarantee the quality of the final product, as well as to avoid damage to health. Metallic impurities can exhibit toxic effects even at low concentrations and so permissible levels are defined by the regulatory agencies and pharmacopeias. However, few methods are presented in official compendia in Brazil. In this sense, fast, sensitive, and precise techniques such as the energy dispersive X-ray fluorescence technique (EDXRF) must be evaluated for the analysis of metals in materials for pharmaceutical use. This way, therefore, there is the need to investigate the presence of contaminants and their concentration levels. The major goal of this research work was to validate a method for using the Energy Dispersive X-Ray Fluorescence (EDXRF) technique to identify and quantify the chemical composition of raw materials and pharmaceutical products. The methodology used was based on the selection of a microcrystalline cellulose matrix, which was spiked with two classes of contaminant elements, Class 1 (Cd, Pb, As, Hg) and Class 2A (Co, V, Ni) as defined by ICH guideline Q3D. The qualitative and quantitative analyses were carried out using the EDXRF technique, which proved to be quite effective and met all the validation parameters required in the mandatory official compendia (Resolution of the Collegiate Board (RDC) of Brazilian Health Regulatory Agency (Anvisa) nº 166, July 24, 2017), such as selectivity, linearity, precision, detection limit, quantification limit and robustness. This study showed that EDXRF can be used as a technique for detection and quantification of elemental impurities belonging to Class 1 and Class 2A.
- Views: 267
- PDF Downloads: 168
- XML Downloads: 17
Downloads
References
ICH. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human use, 2019. Guideline for elemental impurities Q3D. Available at: https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-32.pdf, 2019.
KUSHWAHA, P. Metallic impurities in pharmaceuticals: An overview. Current Pharmaceutical Analysis v. 16, n. 8, p 1-9, 2020.
BRAZILIAN PHARMACOPEIA 6th edition Brasília: ANVISA, 2019. Available at: https://www.gov.br/anvisa/pt-br/assuntos/farmacopeia/farmacopeia-brasileira.
UNITED STATES PHARMACOPEIA, 2019. USP <1225> Validation of Compendial Procedures.
ARJOMANDIA, M.; SHIRKHANLOO, H. Review: Analytical methods for heavy metals determination in environment and human samples. Anal Meth Environ Chem J v. 2, p. 97-126, 2019. DOI: https://doi.org/10.24200/amecj.v2.i03.73
XU, G.; SONG, P.; XIA, L. Examples in the detection of heavy metal ions based on surface-enhanced Raman scattering spectroscopy. Nanophotonics v 10, n.18, p. 4419–4445, 2021. DOI: https://doi.org/10.1515/nanoph-2021-0363
FURUKAWA, H., ICHIMARU, N., SUZUKI, K., NISHINO, M., BROUGHTON, J., LEINDERS, J., OCHI, H. The comparative verification of calibration curve and background fundamental parameter methods for impurity analysis in drug materials. X-Ray Spectrum v. 46, n. 5, p. 382–387, 2017. DOI: https://doi.org/10.1002/xrs.2788
SAUER, B., XIAO, Y., ZOONTJES, M., KROLL, C. Application of X-ray fluorescence spectrometry for screening pharmaceutical products for Elemental Impurities according to ICH guideline Q3D. J Pharm Biomed Anal, v. 179, p. 1–8, 2020. DOI: 10.1016/j.jpba.2019.113005 DOI: https://doi.org/10.1016/j.jpba.2019.113005
UNITED STATES PHARMACOPEIA, 2013. USP <232> Elemental Impurities-Limits.
ISO GUIDE 35:2017, Fourth Edition: Reference materials - Guidance for characterization and assessment of homogeneity and stability Paperback – August 1, 2019.
WHO, WORLD HEALTH ORGANIZATION. Model List of Essential Medicines, 2019. Available at: https://apps.who.int/iris/bitstream/handle/10665/325771/WHO-MVP-EMP-IAU-2019.06-eng.pdf
MARGUÍ, E., FONTAS, C., BUENDI A., HIDALGO, M., QUERALT, I. Determination of metal residues in active pharmaceutical ingredients according to European current legislation by using X-ray fluorescence spectrometry. J Anal At Spectrom v. 24, p. 1253-1257, 2009. DOI: https://doi.org/10.1039/b904064a
ANVISA. Brazilian Health Regulatory Agency, Resolution of the Collegiate Board (RDC) nº 166, July 24, 2017. Dispõe sobre a validação de métodos analíticos e dá outras providências. Available at: https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/19194581/do1-2017-07-25-resolucao-rdc-n-166-de-24-de-julho-de-2017-19194412.
MARSON, B.M., CONCENTINO, V., JUNKERT, A.M., FACHI, M.M., VILHENA, R.O., PONTAROLO, R. Validation of analytical methods in a pharmaceutical quality system: an overview focused on hplc methods. Quim Nova v. 43, n. 8, p. 1190-1203, 2020. DOI: https://doi.org/10.21577/0100-4042.20170589
KONOPKA, J. Options for quantitative analysis of light elements by SEM/EDS. Technical Note 52523. Thermo Fisher Scientific, Madison, WI USA. Available at: https://tools.thermofisher.com/content/sfs/brochures/TN52523_E_0713M_LightElement_H.pdf
BELOUAFA, S., HABTI, F., BENHAR, S., BELAFKIH, B., TAYANE, S., HAMDOUCH, S., BENNAMARA, A., ABOURRICHE, A. Statistical tools and approaches to validate analytical methods: methodology and practical examples. Int J Metrol Qual Eng v. 8, n. 9, p 1-10, 2017. Available at: https://www.metrology-journal.org/articles/ijmqe/pdf/2017/01/ijmqe160046.pdf. DOI: https://doi.org/10.1051/ijmqe/2016030
INMETRO. Instituto Nacional de Metrologia, Qualidade e Tecnologia. Orientação sobre validação de métodos analíticos DOQ-CGCRE-008, 2020. Available at: http://www.inmetro.gov.br/Sidoq/Arquivos/Cgcre/DOQ/DOQ-Cgcre-8_08.pdf
VOGEL-MIKUŠ, K., ARČON, I.; KUMP, P., PELICON, P., NEČEMER, M., VAVPETIČ, P., KOREN, S., REGVAR, M. Analytical tools for exploring metal accumulation and tolerance in plants. In: ANJUM, N. A., AHMAD, I., DUARTE, A.C., UMAR, S., KHAN, N.A., PEREIRA, M. E. Phytotechnologies: Remediation of Environmental Contaminants, 2012, p. 468–521. Taylor & Francis, eBooks. DOI: https://doi.org/10.1201/b12954-30
KUMP, P., NEČEMER, M., VEBER, M. Determination of trace elements in mineral water using total reflection X-ray fluorescence spectrometry after preconcentration with ammonium pyrrolidinedithiocarbamate. X-Ray Spectrom v. 26, n. 4, p. 232–236, 1998. DOI: https://doi.org/10.1002/(SICI)1097-4539(199707)26:4<232::AID-XRS250>3.0.CO;2-J
NEČEMER, M., KUMP, P., VOGEL-MIKUŠ, K. Use x-ray fluorescence-based analytical techniques in phytoremediation. In: GOLUBEV, I.A. (Editors) Handbook of Phytoremediation, 9. ed., 2021, p. 331-358, Nova Science Publishers: New York.
CHOWDARY L. G., RAVISANKAR, P., KUMAR, A. G., MOUNIKA K, BABU P. S. Analytical method validation parameters: An updated review. Int. J Pharm Sci Rev v. 61, n. 2, p. 1-7, 2020.
EMA. European Medicines Agency; ICH Harmonized tripartite guideline - Validation of analytical procedures: text and methodology Q2 (R1), London, 2005. Available at: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf.
GUSTAVO GONZÁLEZ, A., ÁNGELES HERRADOR, M. A. Practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. TrAC - Trend Anal Chem v. 26, n. 3, p. 227–238, 2007. DOI: https://doi.org/10.1016/j.trac.2007.01.009
LUO, L., WANG, B., JIANG, J., FITZGERALD, M., HUANG, Q., YU, Z., LI, H., ZHANG, J., WEI, J., YANG, C., ZHANG, H., DONG, L., CHEN, S. Heavy metal contaminations in herbal medicines: Determination, comprehensive risk assessments, and solutions. Front Pharmacol, v. 14, p. 1-14, 2021. DOI: https://doi.org/10.3389/fphar.2020.595335
DESTEFANO, T., THOMAS, R. From heavy metals testing to the measurement of elemental impurities in pharmaceuticals: Over 100 years in making the change. Spectroscopy v. 33, n. 5, p. 14-19, 2018.
CROFFIE, M. E.T., WILLIAMS, P.N., FENTON, O., FENELON, A., METZGER, K., DALY, K. Optimizing sample preparation and calibrations in EDXRF for quantitative soil analysis. Agronomy v. 10, n. 1309, p. 1-16, 2020. DOI: https://doi.org/10.3390/agronomy10091309
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/