Monte Carlo simulation-aided design of a thermal neutron generator system from 241Am-Be isotopic sources
DOI:
https://doi.org/10.15392/2319-0612.2023.2118Keywords:
neutrongraphy, thermal neutrons, Monte Carlo, simulation, PHITSAbstract
Collimated thermal neutron beams are obtained from neutron extraction channels in nuclear reactors for various applications in research and technology, such as neutron imaging techniques (neutron radiography, neutron radioscopy, neutron tomography, and neutron-based autoradiography). Practical setups for neutron radiography using ion beams from particle accelerators and radioisotopic sources of fast neutrons have been also developed. However, only radioisotopic sources enable autonomous and transportable thermalization systems that can produce thermal neutron collimated beams. This work presents the performance results for a prototype of a compact system that generates a collimated beam of thermal neutrons using low-activity isotopic 241Am-Be sources. It was designed with the aid of Monte Carlo simulation using the PHITS v 3.17 program. Experimental measurements of the fluence of the neutron beam produced by the built prototype showed good agreement with the simulated values by the Monte Carlo method.
- Views: 115
- PDF Downloads: 108
- XML Downloads: 3
Downloads
References
INTERNATIONAL ATOMIC ENERGY AGENCY. Use of neutron beams for low and me-dium flux research reactors: radiography and materials characterization. IAEA-TECDOC-837. Vienna: IAEA, 1993.
INTERNATIONAL ATOMIC ENERGY AGENCY. Neutron imaging: A non-destructive tool for materials testing. IAEA-TECDOC-1604. Vienna: IAEA, 2008.
BERGER, H. Neutron Radiography: Methods, capabilities, and applications. New York: Elsevier (1965).
CHANKOW, N. Neutron Radiography. Defense Science Journal, v. 32, n. 3, p. 259-273, 1982.
STROBL, M.; MANKE, I.; KARDJILOV, N.; HILGER, A.; DAWSON, M.; BANHART; J. Advances in neutron radiography and tomography. Journal of Physics D: Applied Phys, v. 42 (2009) 243001.
CRAFT, A. E.; HILTON, A.; PAPAIOANNOU, G. C. Characterization of a neutron beam fol-lowing reconfiguration of the Neutron Radiography Reactor (NRAD) core and addition of new fuel elements. Nuclear Engineering and Technology, v. 48, n. 1, p. 200-210, 2016.
FANTIDIS, J. G.; NICOLAOU, G. E. Development of a neutron radiography system based on a 10 MeV electron Linac. Majlesi Journal of Electrical Engineering, v.14, n. 4, p. 21-28, 2020.
ZHAO, D.; JIA, W.; HEI, D.; CHENG, C.; LI, J.; CAI, P.; CHEN, Y. Design of a neutron shielding performance test system based on Am–Be neutron source. Radiation Physics and Chemistry, v. 193, April 2022, article 109954.
DE JUREN J. A.; ROSENWASSER H. Absolute calibration of the NBS Standard Thermal Neutron Density. Journal of Research of the National Bureau of Standards, v. 52, n. 2, p. 93-96. 1954.
PRACY, M.; HAQUE, A.K.M.M. Neutron howitzer design. Nuclear Instruments and Methods, v. 135, n. 2, p. 217-221, 1976.
LACOSTE, V.; GRESSIER, V.; MULLER, H.; LEBRETON, L. Characterization of the IRSN graphite moderated Americium–Beryllium neutron field. Radiation Protection Dosime-try, v. 110, n. 1-4, p. 135–139, 2004.
LACOSTE, V. Design of a new IRSN thermal neutron field facility using Monte-Carlo sim-ulations. Radiation Protection Dosimetry, v. 126, n. 1-4, p. 58–63, 2007.
GUALDRINI, G.; BEDOGNI, R.; MONTEVENTI, F. Developing a thermal neutron irra-diation system for the calibration of personal dosemeters in terms of HP(10). Radiation Protec-tion Dosimetry, v. 110, n. 1-4, p. 43–48, 2004.
BEDOGNI, R.; SACCO, D.; GÓMEZ-ROS, J. M.; LORENZOLI, M.; GENTILE, A.; BUONOMO, B.; POLA, A.; INTROINI, M.V.; BORTOT, D.; DOMINGO, C. ETHERNES: A new design of radionuclide source-based thermal neutron facility with large homogeneity ar-ea. Applied Radiation and Isotopes, v. 107, p. 171-176, 2016.
BEDOGNI, R.; SPERDUTI, A.; PIETROPAOLO, A.; PILLON, M.; POLA, A.; GÓMEZ-ROS, J.M. Experimental characterization of HOTNES: A new thermal neutron facility with large homogeneity area. Nuclear Instruments and Methods in Physics Research A, v. 843, p. 18–21, 2017.
LUSZIK-BHADRA, M.; REGINATTO, M.; WERSHOFEN, H.; WIEGEL, B.; ZIMBAL, A. New PTB thermal neutron calibration facility: first results. Radiation Protection Dosimetry, v. 161, n. 1-4, p. 352–356, 2014.
FERRULLI, F.; SILARI, M.; THOMSEN, F.; ZORLONI, G. A thermal neutron source for the CERN radiation Calibration Laboratory. Applied Radiation and Isotopes, v. 178, 2021, ar-ticle 109977.
ANDERSON, B. C.; HOLBERT, K. E.; BOWLER; H. Design, construction, and modeling of a 252Cf neutron irradiator. Science and Technology of Nuclear Installations, v. 2016, arti-cle 9012747.
NISHINO, S.; TANIMURA, Y.; EBATA, Y.; YOSHIZAWA, M. Development of the graphite-moderated neutron calibration fields using 241Am-Be sources in JAEA-FRS. Journal of Radiation Protection and Research, v. 41, n. 3, p. 211-215, 2016.
KANG, S.; KIM, J.; KIM, J.H.; PARK, H.; PARK, H.; YOON, Y. S. Neutron irradiation facilities, neutron measurement system, and mono-energetic neutron fields at KRISS. Journal of the Korean Physical Society, v. 82, p. 586–594, 2023.
ASTUTO, A.; SALGADO, A. P.; LEITE, S. P.; PATRÃO, K. C.; FONSECA, E. S.; PE-REIRA, W. W.; LOPES, R. T. Thermal neutron calibration channel at LNMRI/IRD. Radiation Protection Dosimetry, v. 161, n. 1-4, p. 185-189, 2014.
SATO, T.; IWAMOTO, Y.; HASHIMOTO, S.; OGAWA, T.; FURUTA, T.; ABE, S.; KAI, T.; TSAI, P.; MATSUDA, N.; IWASE, H.; SHIGYO, N.; SIHVER, L.; NIITA, K. Features of Particle and Heavy Ion Transport Code System (PHITS) version 3.02. Journal of Nuclear Sci-ence and Technology, v. 55, n. 6, p. 684-690, 2018.
OROZCO, A. C.; FEDERICO, C. A. and GONÇALEZ, O. L. Monte Carlo simulation-assisted project of a thermalization neutron system for neutrongraphy from 241Am-Be sources: Progress report. In: INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE 2021 (online), virtual meeting, Brazil, November 29 – December 2, 2021. Available at: < https://inac2021.aben.com.br/resumos/R0589-1.pdf>. Last accessed: 15 May 2022.
ISO - International Organization for Standardization. Reference neutron radiations – Part 1: Characteristics and methods of production. ISO 8529-1:2001(E).
MOREIRA, D. S.; KOSKINAS, M. F.; YAMAZAKI, I. M.; DIAS, M. Determination of 51Cr and 241Am X-ray and gamma-ray emission probabilities per decay. Applied Radiation and Isotopes, v. 68, n. 4-5, p. 596–599, 2010.
TERADA, K.; NAKAMURA, S.; NAKAO, T.; KIMURA, A.; IWAMOTO, O.; HARADA, H. Measurements of gamma-ray emission probabilities of 241, 243Am and 239Np. Journal of Nuclear Science and Technology, v. 53, n. 11, p. 1881-1888, 2016.
LIU, Z.; CHEN, J.; ZHU, P.; LI; Y. The 4.438MeV gamma to neutron ratio for the Am–Be neutron source. Applied Radiation and Isotopes, v. 65, n. 12, p. 1318-1321, 2008.
SATO, T.; NIITA, K.; MATSUDA, N.; HASHIMOTO, S.; IWAMOTO, Y.; FURUTA, T.; NODA, S.; OGAWA, T.; IWASE, H.; NAKASHIMA, H.; FUKAHORI, T.; OKUMURA, K.; KAI, T.; CHIBA, S.; SIHVER, L. Overview of particle and heavy ion transport code system PHITS. Annals of Nuclear Energy, v. 82, p. 110-115, 2015.
NIITA, K.; IWASE, H.; SATO, T.; IWAMOTO, Y.; MATSUDA, N.; SAKAMOTO, Y.; NAKASHIMA, H.; MANCUSI, D.; SIHVER, L. Recent Developments of the PHITS code. Progress in Nuclear Science and Technology, v. 1, p.1-6, 2011.
BLAND, J. M.; ALTMAN, D. G. Measuring agreement in method comparison studies. Sta-tistical Methods in Medical Research, v. 8, n. 2, p. 135–60, 1999.
MOHD ALI, N. S.; HAMZAH, K.; JAMRO, R. Simulation of beam collimator for neutron radiography using Monte Carlo method. Journal of Nuclear and Related Technologies, v. 13, n. 2, p. 1-12, 2016.
DINCA, M.; PAVELESCU, M; IORGULIS, C. Collimated neutron beam for neutron radi-ography. Romanian Journal of Physics, v. 51, n. 3–4, p. 435–441, 2006.
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/