Calculation of scale thickness in oil pipelines using transmission gamma

Authors

  • Tâmara Porfíro Teixeira Instituto de Engenharia Nuclear
  • César Marques Salgado Instituto de Engenharia Nuclear

DOI:

https://doi.org/10.15392/bjrs.v8i3B.412

Keywords:

transmission gamma, scale, MCNP-X code, oil pipelines

Abstract

As incrustações podem ser definidas como compostos químicos inorgânicos, inicialmente insolúveis, e que se precipitam se acumulam na parede interna de tubos, equipamentos de superfície e / ou partes de componentes envolvidos na produção e transporte de petróleo. Esses compostos, ao precipitarem, causam problemas na indústria do petróleo e consequentemente resultam em perdas na otimização do processo de extração. Apesar da importância e do impacto da precipitação desses compostos no âmbito tecnológico e econômico, ainda existe a dificuldade em determinar métodos que possibilitem a identificação e quantificação da escala em um estágio inicial. O uso da técnica de transmissão gama pode fornecer subsídios para um melhor entendimento da deposição desses compostos, tornando-o uma ferramenta adequada para a determinação não invasiva de sua deposição em dutos de transporte de petróleo. A geometria usada para a detecção de incrustações inclui um tubo de aço de 280 mm de diâmetro contendo escama de sulfureto de bário (BaSO4 ) variando de 5 a 60 mm, uma fonte de radiação gama com feixe divergente e como detector de cintilação NaI (Tl) 2x2 ”. O tamanho da abertura do feixe colimado foi avaliado (2 a 7 mm) para também quantificar o erro associado no cálculo da escala. O estudo foi realizado com simulação computacional, utilizando o código MCNP-X e validado por meio de equações analíticas que indicam a possibilidade de utilização deste estudo para este fim.

Downloads

Download data is not yet available.

Author Biographies

Tâmara Porfíro Teixeira, Instituto de Engenharia Nuclear

CENS

César Marques Salgado, Instituto de Engenharia Nuclear

CENS

References

ALLEN, T.O. AND ROBERTS, A.P., Production Operations, 2rd ed., Tulsa, OK, 1982. p. 11-19.

ACHMAD B. E HUSSEIN E.M.A., An X-ray Compton scatter method for density measure-ment at a point within an object, Applied Radiation and Isotopes, 2004. p. 805-814.

ERMAN, A.I., HARRIS, J.N., Precision Measurement of Uniformity, of Materials by Gam-ma Ray Transmission, Review Scientific Instruments, 1954.

ESERRA, M. T. F. Evaluation of the scale thickness in oil extraction ducts, M.Sc., Institute of Radioprotection and Dosimetry - National Commission for Nuclear Energy, IRD-RJ, Rio de Janeiro, RJ, Brazil, 2012.

FIORENTIN, L. D. Study of Mathematical Models for Predicting Coke Intake in Pipes - Application to the Residual Diesel Distributor of a Vacuum Distillation Tower, M.Sc., CEFET-PR, Paraná, PR, Brazil, 2004.

KHORSANDI M. E FEGHHI S.A.H., Design and construction of a prototype gamma-ray densitometer for petroleum products monitoring applications. Measurement, 44, 2011. p. 1512-1515.

LANL, A General Monte Carlo N-Particle Transport Code, 5rd, Volume III: Developer’s Guide. Los Alamos, University of California for the U.S.A, 2003.

MARINHO, A.C, COSTA, D.R., SANTOS, E., COSTA, K.A., OLIVEIRA, D.; LOPES, R.T., Monitoring and Quantification of Fouling by Radiographic Methods. In: National Congress of Non-Destructive Testing, São Paulo, SP, Brazil, 2008.

MARTIN A., MEAD S., WADE B. O., Materials Containing Natural Radionuclides in Enhanced Concentrations, European Commission Report EUR 17625, 1997.

MAUCEC, M. AND DENIJS, I., Development and calibration of a gamma-ray density meter for sediment-like materials. Appl. Radiat. Isot., 67, 2009. p. 1829-1836.

MCCONN JR., RJ, GESH, C.J., PAGH, R.T., RUCKER, R.A., WILLIAMS, R.G., Compen-dium of Material Composition Data for Radiation Transport Modeling, Radiation portal monitor project, Pacific Northwest, National Laboratory. PIET-43741-TM-963 PNNL-15870 Rev. 1, 2011.

MI, Y., ISHII, M. E TSOUKALAS, L.H., Vertical two-phase flow identification using advan-ced instrumentation and neural networks. Nuclear Engineering and Design, 184, pp.409-420, 1998.

MONNO, A., Tube Wall Thickness, GB Patent Document 2146115/A/, GB Patent Aplication 8323913, Int. Cl. G01B 15/02, 9 p., April, 1985.

NIST, Nacional Institute of Standards and Technology. Available online: http://physics.nist.gov/xaamdi, Last accessed: 04 jul. 2017.

OLIVEIRA, D., Development of a System Based on Transmission of Gamma Radiation for Detection of Scales in Pipelines used for oil extraction, International Nuclear Atlantic Conference - INAC, Rio de Janeiro, RJ, Brazil, 2009.

SALGADO C.M., BRANDÃO L.E.B., NASCIMENTO C.M.N.A., SCHIRRU R., RAMOS R. E SILVA A.X., Prediction of volume fractions in three-phase flows using nuclear tech-nique and artificial neural network, Applied Radiation and Isotopes, 67, 2009. p. 1812-1818.

SALGADO C. S., BRANDÃO L. E. B., NUNES R. C., NASCIMENTO A. C. H, SALGADO W. L., Study of Solid-Liquid flow regimes in mining industry using Gamma Radiation, In: INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE, 2013, Recife, PE, Bra-zil.

WILLIAN, R.G, GESH, C.J., PAGH, R.T., Compendium of Material Composition Data for Radiation Transport Modeling, NM: Los Alamos National Laboratory, Los Alamos, USA, 2006.

Downloads

Published

2021-02-13

How to Cite

Teixeira, T. P., & Salgado, C. M. (2021). Calculation of scale thickness in oil pipelines using transmission gamma. Brazilian Journal of Radiation Sciences, 8(3B (Suppl.). https://doi.org/10.15392/bjrs.v8i3B.412

Issue

Section

XX Meeting on Nuclear Reactor Physics and Thermal Hydraulics (XX ENFIR)

Most read articles by the same author(s)