On the feasibility of producing Lu-177 in the IEA-R1 reactor via the direct route
DOI:
https://doi.org/10.15392/bjrs.v9i1A.1411Keywords:
Lu-177, radioisotope productionAbstract
Over the last years the 177Lu radioisotope has attracted great interest for the use in therapeutic and diagnostic procedures simultaneously, being what is now called a theranostic radioisotope. There are mainly two ways of producing this radioisotope, by direct neutron capture in a 176Lu target (the “direct route") or by irradiating a 176Yb sample, producing 177Yb that will then decay to 177Lu (also referred as the “indirect route”). In this work the feasibility of producing 177Lu in the IEA-R1 nuclear reactor via the direct route was assessed, and the specific activity that could be obtained was estimated both experimentally and theoretically, allowing for a discussion on the feasibility of commercially producing 177Lu by 176Lu neutron capture in the IEA-R1 reactor.Downloads
References
DAS, T. ; BANERJEE, S. Theranostic Applications of Lutetium-177 in Radionuclide Therapy, Curr Radiopharm v.9, p. 94–101, 2016.
JING, L.; SHI, J.; FAN, D.; LI, Y.; LIU, R.; DAI, Z.; WANG, F.; TIAN, J. 177Lu-Labeled Cerasomes Encapsulating Indocyanine Green for Cancer Theranostics, ACS Appl. Mater. Interfaces, v. 7, p. 22095–22105, 2015.
PERSSON, M.; JUHL, K.; RASMUSSEN, P.; BRANDT-LARSEN, M.; MADSEN, J.; PLOUG, M.; KJAER, A. uPAR Targeted Radionuclide Therapy with 177Lu-DOTA-AE105 Inhibits Dissemination of Metastatic Prostate Cancer, Mol. Pharmaceutics, v. 11, p. 2796–2806, 2014;
KONDEV, F. G. Nuclear Data Sheets for A = 177, Nuclear Data Sheets, v. 98, p. 801–1095, 2003.
MUGHABGHAB, S. F. Thermal Neutron Capture Cross Sections Resonance Integrals And G-Factors - INDC(NDS)-440, Vienna :IAEA, 2003.
DVORAKOVA, Z.; HENKELMANN, R.; LIN, X.; TÜRLER, A,; GERSTENBERG, H. Production of 177Lu at the new research reactor FRM-II: Irradiation yield of 176Lu(n, γ)177Lu, Appl Radiat Isot, v. 66, p. 147–151, 2008.
KOPECKY, J. NGATLAS - Atlas of Neutron Capture Cross Sections, Vienna :IAEA, 2001. Available at: <https://www-nds.iaea.org/ngatlas2/>. Last accessed 15 May 2020.
KOYAMA, M.; MATSHUSHITA, R. Use of Neutron Spectrum Sensitive Monitors for Instrumental Neutron Activation Analysis, Bulletin of the Institute for Chemical Research, Kyoto University, v. 58, p. 235–243, 1980.
HØGDAHL, O. T. Neutron absorption in pile neutron activation analysis - Report MMPP-226-1, Ann Arbor:University of Michigan, 1962.
WESTCOTT, C. H. Effective cross section values for well moderated thermal reactor spectra - Report AECL-1101, Chalk River : Chalk River Laboratory, 1960.
COURSEY, J. S. ; SCHWAB, D. J. ; TSAI, J. J. ; DRAGOSET, R. A. Atomic Weights and Isotopic Compositions with Relative Atomic Masses, NIST, 2015. Available at : <https://physics.nist.gov/comp>. Last accessed 15 May 2020.
HOLDEN, N. E. Temperature dependence of the Westcott g-factor for neutron reactions in activation analysis, Pure Appl. Chem., v. 71, p. 2309–2315, 1999.
DE CORTE, F.; SIMONITS, A. Recommended nuclear data for use in the k0 standardization of neutron activation analysis, Atomic Data Nucl. Data Tables, v. 85, p. 47 67, 2003.
PILLAI, M.R.A.; CHAKRABORTY, S. ; DAS, T. ; VENKATESH, M. ; RAMAMOORTHY, N. Production logistics of 177Lu for radionuclide therapy, Appl Radiat Isot, v. 59, p. 109–118, 2003.
CHAKRABORTY, S. ; VIMALNATH, K.V.; LOHAR, S.P. ; SHETTY, P. ; DASH, A. On the practical aspects of large-scale production of 177Lu for peptide receptor radionuclide therapy using direct neutron activation of 176Lu in a medium flux research reactor: the Indian experience, J Radioanal Nucl Chem, v. 302, p. 233–243, 2014.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/