X-ray fluorescence spectrometry: An alternative technique for analysis of waste

Authors

  • Marcos Antonio Scapin Instituto de Pesquisas Energéticas e Nucleares / IPEN-CNEN https://orcid.org/0000-0002-0606-4369
  • Maria Cristina Tessari-Zampieri Instituto de Pesquisas Energéticas e Nucleares / IPEN-CNEN
  • Sabine Guilhen Instituto de Pesquisas Energéticas e Nucleares / IPEN-CNEN
  • Marycel Cotrim Instituto de Pesquisas Energéticas e Nucleares / IPEN-CNEN

DOI:

https://doi.org/10.15392/2319-0612.2023.2144

Keywords:

uranium, X-ray, EDXRF

Abstract

This study aims to develop reliable analytical methodology that is, cost-effective, and requires minimal sample quantity to quantify uranium content in nuclear waste and others. The Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) technique was used, and a rigorous comparison was made between the fundamental parameters (FP) method and the empirical (EMP) method. Statistical evaluation of results demonstrated that the FP method showed a satisfactory level of confidence for precision and limit of quantification.

Downloads

Download data is not yet available.

Author Biography

  • Marcos Antonio Scapin, Instituto de Pesquisas Energéticas e Nucleares / IPEN-CNEN
    Possui Bacharelado e Licenciatura em Ciências com Habilitação em Química, Mestrado e Doutorado em Ciências na área de Tecnologia Nuclear pelo IPEN-USP. Atualmente desenvolve  atividades de análises químicas e físicas por meio das técnicas de fluorescência de raios X e microscopia eletrônica nos Centros de Química e Meio Ambiente e Lasers e Aplicações no Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP). As atividades de pesquisas estão concentradas no desenvolvimento de metodologias para o estudo de materiais aplicados nas diferentes áreas de conhecimento, como nuclear, nanotecnologia, ambiental, saúde forense e outras, com ênfase nas técnicas de fluorescência de raios X e microscopia eletrônica.

References

IAEA – International Atomic Energy Agency. Safeguards Implementation Practices. Guide on Establishing and Maintaining State Safeguards Infrastructure. https://www.iaea.org/publications/10868/safeguards-implementation-practices-guide-on-establishing-and-maintaining-state-safeguards-infrastructure. Last accessed: 08 Set. 2022.

CNEN 8.01 - Norma CNEN NN 8.01. Gerência de rejeitos radioativos de baixo e médio níveis de radiação. http://appasp.cnen.gov.br/seguranca/normas/pdf/Nrm801.pdf. Last accessed: 28 Aug. 2022.

DEL SORDO FILHO, G.; TORRECILHA, J.K.; SCAPIN, M.A. et al. Characterization and adsorption capacity of Brazilian kaolin. J Radioanal Nucl Chem, v. 329, p. 61–70, 2021.

SILVA, P,; MÁDUAR, M.; SCAPIN, M.A.; et al. Radiological assessment of pharmaceutical clays. J Radioanalytical Nucl Chem. DOI: 10.1007/s10967-015-4404-y.

MARTINS, A.P.G.; NEGRI, E.M.; SALDIVA, P.H.N.; et al. Green infrastructure to monitor and minimize the impacts of air pollution. J Estudos Avancados (Online), 2021. DOI: 10.1590/s0103-4014.2021.35102.003

SCAPIN, M.A.; SILVA, C.P.; COTRIM, M.E.B.; et al. Application of multivariate calibration for simultaneous determination of major and minor constituents in U3Si2 by X-ray fluorescence. J Radioanalytical Nucl Chem, v. 302 p. 1077-1085, 2014.

SCAPIN, M.A.; SALVADOR, V.L.R.; COTRIM, M.E.B.; et al. Uncertainty measurement evaluation of WDXRF and EDXRF techniques for the Si and Utotal determination in U3Si2 nuclear fuel. J Radioanal Nucl Chem, v. 287, p. 807–811, 2011.

CRISS, J.W.; BIRK, L.S. Calculation Methods for Fluorescent X-Ray Spectrom. Anal Chem, v. 40, p.1080-1086, 1968.

BERTIN, E.P. In: Plenum Press Principles and practice of X-ray spectrometric analysis, cap. 01, New York. 1970.

GUILHEN, S.N.; COTRIM, M.E.B.; SAKATA, S.K.; et al. Application of the fundamental parameter method to the assessment of major and trace elements in soil and sediments from Osamu Utsumi uranium mine by WDXRF. Intern Engine J, v. 72, p. 609-617, 2019.

NBL Program Office - U.S. Department of Energy (2020) Certified Reference Material C123 (1-7) Uranium (U3O8) 18 Element Impurity Standard in Powder Form. Disponível em:<https://www.energy.gov/sites/default/files/2021/01/f82/C123%20%2817%29%20Uranium%20%28U3O8%29%20Oxide%20%20Powder%20Form%20%2818%20Element%20Impurity%20Standa%29%20Dec%202020.pdf > Acessado 04/11/2022.

NBL Program Office - U.S. Department of Energy (2008) Certified Reference Material C124 Uranium (U3O8) 24 Element Impurity Standard (Each unit consists of a set of 7 levels). Disponível <https://science.osti.gov/-/media/nbl/pdf/price-lists/certificates/CRM_124_1-7_Uranium_Normal_Oxide_U308_24_Element_Impurity_July_2008.pdf?la=en&hash=E5541F31AE601B46D9D5BA29110716C8A9925096> Acessado 04/11/2022.

Instituto Nacional de Metrologia, Normalização e Qualidade Industrial – INMETRO (2020) Orientação sobre validação de métodos analíticos (DOQ-CGRE-008) http://www.inmetro.gov.br/Sidoq/pesquisa_link.asp?seq_tipo_documento=5&cod_uo_numeracao=00774&num_documento=008 Last accessed: 14 Jul. 2022.

Downloads

Published

2023-05-22

How to Cite

X-ray fluorescence spectrometry: An alternative technique for analysis of waste. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 11, n. 1A (Suppl.), p. 01–08, 2023. DOI: 10.15392/2319-0612.2023.2144. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2144. Acesso em: 22 dec. 2024.

Similar Articles

51-60 of 165

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)