Quantitative analysis of minor and trace elements in blood serum of dairy cattle (Bos taurus) by WDXRF
DOI:
https://doi.org/10.15392/2319-0612.2022.1911Keywords:
x-ray, heavy metal, bovine, detectionAbstract
Assessment of heavy metal content in biological fluids is essential to determine human and animal health as a result of exposure to contaminated environments, food, and water. WDXRF is a non-destructive method that involves no chemical treatments. It is possible to perform fast chemical analysis without producing hazardous waste and uses a small sample volume (± 50 mL), which is useful to veterinary usage. Therefore, the aim of this work was to implement an alternative method for minor and trace elements in blood serum samples of dairy cattle (Bos taurus) using WDXRF. It was implemented for the determination of Al, Cr, Co, Fe, Cu, As, and Hg, and the method was evaluated by comparing WDXRF and ICP-OES results of a set of 14 blood serum samples of dairy cattle using principal component analysis (PCA). Results of WDXRF and ICP-OES were statistically equivalent to all analyzed elements, except for Fe and Al, which were still comparable. WDXRF proved to be a suitable alternative methodology for heavy metal detection in animal blood serum samples due to the low sample volume. The results of this study enable a new and fast method for veterinary internal medicine, which requires a technique that quickly detects animals with a high concentration of toxic elements to assure the correct protocols to prevent the animal's death.
Downloads
References
NUTTALL, K.L.; GORDON, K.O. Inductively coupled plasma mass spectrometry for trace element analysis in the clinical laboratory. Ann Clin lab Sci, v. 25, p. 264-271, 1995.
JARVIS, I.; Jarvis, K.E. Inductively coupled plasma-atomic emission spectrometry in exploration geochemistry. J Geochem Explor, v. 44, p. 139-200, 1992. DOI: https://doi.org/10.1016/0375-6742(92)90050-I
KRAMAR, U. X-ray Fluorescence Spectrometers. Encyclopedia of Spectroscopy and Spectrometry, p. 2467-2477, 1999. DOI: https://doi.org/10.1006/rwsp.2000.0336
Moriyama, T. ; Morikawa, A. Sample preparation for X-ray fluorescence analysis. VII. Liquid sample. Rigaku J, v. 33, p. 24-29, 2017.
TUCK, M.K.; Chan, D.W.; Chia, D.; Godwin, A.K.; Grizzle, W.E.; Krueger, K.E.; Rom, W.; Sanda, M.; Sorbara, L.; Stass, S.; Wang, W.; Brenner, D.E. Standard Operating Procedures for Serum and Plasma Collection: Early Detection Research Network Consensus Statement Standard Operating Procedure Integration Working Group. J Prot Res, v. 8, p. 113-117, 2009. DOI: https://doi.org/10.1021/pr800545q
RTEAM. RStudio: Integrated Development for R. http://www.rstudio.com/, 2020.
GUAGNINI, F.S.; Correa, A.; Pescador, C.A.; Colodel, E.M.; Panziera, W.; Dalto, A.; Driemeier, D. Intoxicação por chumbo em bovinos mantidos em área de treinamento militar Lead Poisoning in Cattle Held in a Military Training area. Acta Sci Vet, v. 46, p. 253, 2018. DOI: https://doi.org/10.22456/1679-9216.85149
DANTAS, G.N.; Santarosa, B.P.; Cagnini, D.Q.; Cavalcanti, R.M.; Chiacchio, S.B.; Gonçalves, R.C.; Riet-Correa, F.; Borges, A.S.;. Acute poisoning by monosodium methanearsonic acid in cattle. Pesq Vet Bras, v. 32, 2012. • https://doi.org/10.1590/S0100-736X2012001200005 DOI: https://doi.org/10.1590/S0100-736X2012001200005
BANDINELLI, M.B.; Pavarini, S.P.; Gomes, D.C.; Bassuino, D.M.; Wurster, F.; Wouters, F.; Cruz, C.E.F.; Driemeier, D. Acute copper poisoning in sheep. Ciência Rural, v. 43, p. 1862-1865, 2013. DOI: https://doi.org/10.1590/S0103-84782013001000021
FONTES, T.N.; Carvalho, J.S.; Mendonça, M.F.F.; Farias, S.S.; Mori, C.S.; Silva, D.N.; Madureira, K.M.; Peixoto, T.C. Outbreak of enzootic ataxia in goats and sheep in the state of bahia. Pesq Vet Bras, v. 39, p. 2019 • https://doi.org/10.1590/1678-5150-pvb-6298 DOI: https://doi.org/10.1590/1678-5150-pvb-6298
HELMER, C.; Hannemann, R.; Humann-Ziehank, E.; Kleinschmidt, S.; Koelln, M.; Kamphues, J.; Ganter, M. A Case of Concurrent Molybdenosis, Secondary Copper, Cobalt and Selenium Deficiency in a Small Sheep Herd in Northern Germany. Animals, v. 11, p. 1864, 2021. https://doi.org/10.3390/ani11071864 DOI: https://doi.org/10.3390/ani11071864
RADOSTITS, O.M.; Blood, D.C.; Gay, C.C. Clínica Veterinária: um tratado de doenças dos bovinos, ovinos, suínos, caprinos e equinos, Guanabara Koogan, Rio de Janeiro & Brasil, 2002.
LUCCI, C.S. “Nutrição e manejo de bovinos leiteiros”, Manole, São Paulo & Brasil, 1997.
CUSTODIO, P.J.; Carvalho, M.L.; Nunes, F.; Pedroso, S.; Campos, A. Direct analysis of human blood (mothers and newborns) by energy dispersive X-ray fluorescence. J Trace Elem Med Biol, v. 19, p. 151-158, 2005. https://doi.gor/10.1016/j.jtemb.2005.09.002. DOI: https://doi.org/10.1016/j.jtemb.2005.09.002
KAINTH, H.S.; Khandelwal, D.; Singh, R.; Singh, G.; Puri, S. The role of trace elements in breast cancer and their characterization using x-ray fluorescence technques. Trace Elements and their effects on human health and disease. IntechOpen, 2020. https://doi.org/10.5772/intechopen.95491. DOI: https://doi.org/10.5772/intechopen.95491
PIERZAK, M.; Kubala-Kukus, A. ; Banas, D.; Stabrawa, I.; Wudarczyck-Mocko, J.; Gluszek, S. Study of chromium, selenium and bromine concentrations in blood serum of patients with parenteral nutrition treatment using total reflection -x ray fluorescence analysis. Plos One, v. 15, e0243492. https://doi.org/10.1371/journal.pone.0243492. DOI: https://doi.org/10.1371/journal.pone.0243492
IZUMOTO, Y.; Matsuyama, T.; Mizuhira, M.; Imaseki, H.; Hamano, T.; Sakai, Y.; Oguri, Y.; Yoshii, H. Rapid detection of heavy elements in blood extracted from wounds using x-ray fluorescence analysis. J Radiol Prot., v. 38, p. 1384-1392, 2018. https://doi.org/q0.1088/1361-6498/aae39b. DOI: https://doi.org/10.1088/1361-6498/aae39b
WEST, M.A.T.; Ellis, P.J.; Potts, C.; Streli, C.; Vanhoof, P.; Wobrauschek. Atomic Spectrometry Update – a review of advances in X-ray fluorescence spectrometry and their applications. J Anal Atom Spec, v. 30, p. 1839-1889, 2015. DOI: https://doi.org/10.1039/C5JA90033F
NOVAES, C.G.; Bezerra, M.A; da Silva, E.G.P.; dos Santos, A.M.P.; Romão, I.L.S.; Santos Neto, J.H. A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry (ICP OES). Microc J, v. 128, p. 331-346, 2016. DOI: https://doi.org/10.1016/j.microc.2016.05.015
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/