222Rn Determination in Water and Brine Samples Us-ing Liquid Scintillation Spectrometry

Authors

  • Thiago César Oliveira Universidade Federal de Minas Gerais - UFMG
  • Roberto Pellacani Guedes Monteiro Centro de Desenvolvimento da Tecnologia Nuclear - CDTN
  • Rubens Martins Moreira Centro de Desenvolvimento da Tecnologia Nuclear - CDTN
  • Arno Heeren de Oliveira Universidade Federal de Minas Gerais - UFMG

DOI:

https://doi.org/10.15392/bjrs.v7i2A.631

Keywords:

Keywords, Radon, LSC, Water samples, Brine samples

Abstract

Liquid scintillation spectrometry (LSC) is the most common technique used for 222Rn determination in environmental aqueous sample. In this study, the performance of water-miscible (Ultima Gold AB) and immiscible (Optiscint) liquid scintillation cocktails has been compared for different matrices. 241Am, 90Sr and 226Ra standard solutions were used for LSC calibration. 214Po region was defined as better for both cocktails. Counting efficiency of 76 % and optimum PSA level of 95 for Ultima Gold AB cocktail, and counting efficiency of 82 % and optimum PSA level of 85 for Optiscint cocktail were obtained. Both cocktails showed similar results when applied for 222Rn activity determination in water and brine samples. However the Optiscint is recommended due to its quenching resistance. Limit of detection of 0.08 and 0.06 Bq l1 were obtained for water samples using a sample:cocktail ratio of 10:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. Limit of detection of 0.08 and 0.04 Bq l1 were obtained for brine samples using a sample:cocktail ratio of 8:12 mL for Ultima Gold AB and Optiscint cocktails, respectively.

 

Downloads

Download data is not yet available.

Author Biography

  • Thiago César Oliveira, Universidade Federal de Minas Gerais - UFMG
    Departamento de Engenharia Nuclear - DENU

References

Semprini, L., Hopkins, S. O., Tasker, R. B., 2000. Laboratory, field and modeling studies of radon-222 as a natural tracer for monitoring (napl) contamination. Transport in Porous Media 38, 223-240.

López, M. G., Sánchez, A. M., Escobar, V. G., 2004. Application of ultra-low liquid scintillation of the determination of 222Rn in groundwater. J. Radioanal. Nucl. Chem. 261 (3), 631-636.

Pates, J. M., Mullinger, N. J., 2006. Determination of 222Rn in fresh water: Development of a robust method of analysis by α/β separation liquid scintillation spectrometry. Appl. Radiat. Isot. 65, 92-103.

Forte, M., Rusconi, R., Di-Caprio, E., Bellinzona, S., Sgorbati, G., 2003. Natural radionuclides measurements in drinking water by liquid scintillation counting. methods and results. In: Warwick, P. (Ed.), Environmental Chemical Analysis. Vol. II. Royal Chemical Society, pp. 128-142.

Salonen, L., 1993a. Measurement of low levels of 222Rn in water with diffferent commercial liquid scintillation counters and pulse-shape analysis. In: Noakes, J. E., Schönhofer, F., Polach, H. A. (Eds.), Liquid Scintillation Spectrometry 1992 - Int. Conf. on Advances in LSC. RADIO-CARBON, pp. 361-372.

Ra-226 Radioactive Standard, 2003. Standard reference material 4967A. National Institute of Standards & Technology - NIST, reference date September 01, 2003.

Salonen, L., Hukkanen, H., 1997. Advantages of low-background liquid scintillation alpha-spectrometry and pulse shape analysis in measuring 222Rn, uranium and 226Ra in groundwater sam-ples. J. Radioanal. Nucl. Chem. 226 (1-2), 67-74.

Am-241 Radioactive Standard, 2004. Certificado de calibração C/07/A04, fonte 26L04. Co-missão Nacional de Energia Nuclear - CNEN, Instituto de Radioproteção e Dosimetria - IRD, Labo-ratório Nacional de Metrologia das Radiações Ionizantes - LNMRI, data de referência 15 de

Março, 2004.

Sr-90 Radioactive Standard, 2006. Certificado de calibração C/24/A06, fonte 81L06. Comissão Nacional de Energia Nuclear - CNEN, Instituto de Radioproteção e Dosimetria - IRD, Laboratório Nacional de Metrologia das Radiações Ionizantes - LNMRI, data de referência 10 de Agosto, 2006.

Salonen, L., 2006b. Alpha spillover depends on alpha energy: a new finding in alpha/beta liquid scintillation spectrometry. In: Chalupnik, S., Schönhofer, F., Noakes, J. (Eds.), LSC2005, Advances in Liquid Scintillation Spectrometry. RADIOCARBON, pp. 135-148.

Rocha, A. A., Miekeley, N., Silveira, C. L. P., Bezerra, M. C. M., 1998. Determinação de fósfo-ro orgânico em águas de produção petrolífera por icp- aes e icp- ms após pré-concentração em coluna de sílica-c18. Quim. Nova 21.

D. Al-Azmi, B. Snopek, A. S., Domanski, T., 2004. A simple bubbling system for measuring radon (222Rn) gas concentrations in water samples based on the high solubility of radon in olive oil.

Currie, L. A., 1968. Limits for qualitative detection and quantitative determination: application to radiochemistry. Anal. Chem. 40 (3), 586-593.

Downloads

Published

2019-02-22

Issue

Section

The Meeting on Nuclear Applications (ENAN)

How to Cite

222Rn Determination in Water and Brine Samples Us-ing Liquid Scintillation Spectrometry. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 7, n. 2A (Suppl.), 2019. DOI: 10.15392/bjrs.v7i2A.631. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/631.. Acesso em: 21 nov. 2024.

Similar Articles

11-20 of 365

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)