Determination of 93Zr in radioactive waste from nuclear power plants using Inductively Coupled Plasma Mass Spectrometry
DOI:
https://doi.org/10.15392/bjrs.v6i1.317Keywords:
Zirconium, Evaporator Concentrate waste, TRU, ICPMSAbstract
The zirconium isotope 93Zr is a long-lived pure β-particle-emitting radionuclide produced from 235U fission and from neutron activation of the stable isotope 92Zr and thus occurring as one of the radionuclides found in nuclear reactors. Due to its long half-life, 93Zr is one of the radionuclides of interest for the performance of assessment studies of waste storage or disposal. This paper describes the determination of 93Zr in evaporator concentrate (EC) sample from nuclear power plant (PWR). A zirconium selective separation using liquid-liquid extraction and TRU column were used before the ICPMS measurement to remove isobaric interferences.20-21 93Nb detection limit of 0.045 μg L-1 was obtained for 93Zr determination by ICPMS technique.
Downloads
References
Electric Power Research Institute, Low-level waste characterization guidelines. Pleasant Hill (EPRI-TR-1072), 1996.
IAEA Nuclear Energy Series, Determination and use of scaling factors for waste characteri-zation in nuclear power plants, IAEA, Vienna (No. NW-T-1.18), 2009.
Vértes A.; Nagy S.; Klencsár Z.; Molnár G.L.; Handbook of nuclear chemistry, vol. 2, Kluwer Academic Publishers, Dordrecht, 2003.
Cassete P.; et al.; Determination of 93Zr decay scheme and half-life; Appl. Radiat. Isot. 56:41-46, 2009.
Environmental Protection Agency; Inventory of radiological methodologies; for sites con-taminated with radioactive materials. Montgomery, US (EPA 402-R-06-007), 2006.
Connick R. E.; McVey W. H.; The aqueous chemistry of zirconium. J. Am. Chem. Soc. 71 (9): 3182–3191, 1949.
Espartero A. G.; Suárez J. A.; Rodríguez M.; Pina G.; Radiochemical analysis of 93Zr. Appl. Ra-diat. Isot. 56:41-46, 2002.
Quemet A.; Maillard C.; Ruas A.; Determination of zirconium isotope composition and concen-tration for nuclear sample analysis using Thermal Ionization Mass Spectrometry. International Journal of Mass Spectrometry, 392:34-40, 2015.
Chartier, F.; Isnard, H.; Degros, J. P.; Faure, A. L.; Fréchou, C. Application of the isotope dilu-tion technique for 93Zr determination in an irradiated cladding by multiple collector-inductively coupled plasma mass spectrometry. International Journal of Mass Spectrometry, 270:127-133, 2007.
Osváth Sz.; Vajda N.; Molnár Zs.; Széles É.; Stefánka Zs.; Determination of 237Np, 93Zr and other long-lived radionuclides in medium and low level radioactive waste samples. J. Radioanal. Nucl. Chem. 286:675–680, 2010.
Osváth Sz.; Vajda N.; Stefánka Zs.; Széles É.; Molnár Zs.; Determination of 93Zr and 237Np in nuclear power plant wastes. J. Radioanal. Nucl. Chem. 287:459–463, 2011.
Dulanská S; Remenec B; Gardonová V; Mátel L.; Determination of 93Zr in radioactive waste using ion exchange techniques. J. Radioanal. Nucl. Chem. 293:635–640, 2012.
NuDat – National Nuclear Data Center, Available at: <http://www.nndc.bnl.gov/nudat2/>. Last acessed: 20 May, 2016.
Eichrom. TRU Resin, Avaiable at: <http://www.eichrom.com/products/info/tru_resin.aspx>. Last acessed: 18 October, 2015.
Sigma-Aldrich. DOWEX Resin, Available at: <http://www.sigmaaldrich.com/catalog/product/sial/217514?lang=pt®ion=BR>. Last acessed: 18 October, 2015.
NIST – Atomic Spectra Database Ionization Energies Form, Available at: <http://www.physics.nist.gov/PhysRefData/ASD/ionEnergy.html>. Last acessed: 09 May, 2016.
NIST. Nb-93 standard reference material 3137. Reference date June 10, 2009, Gaithersburg: NIST, 2009.
Rodriguez M. et al. Interlaboratory radiochemical analysis comparison on a primary waste flux. Luxembourg: European Commission, (EUR-20616), 2003.
Reis A. S. Jr.; Temba E. S. C.; Kastner G. F.; Monteiro R. P. G.; Combined procedure using radiochemical separation of plutonium, americium, and uranium radionuclides for alpha-spectrometry. J Radioanal Nucl Chem. 287:567–572, 2011.
Oliveira T. C.; Monteiro R. P. G.; Kastner G. F.; Barbier F. B.; Oliveira A. H.; Radiochemical methodologies applied to determination of zirconium isotopes in low level wastes samples from nuclear power plants. J. Radioanal. Nucl. Chem. 302:41–47, 2014, doi:10.1007/s10967-014-3283-y.
Oliveira T. C.; Monteiro R. P. G.; Oliveira A. H.; A selective separation method for 93Zr in ra-diochemical analysis of low and intermediate level wastes from nuclear power plants. J. Radioanal. Nucl. Chem. 289:497–501, 2011, doi:10.1007/s10967-011-1097-8.
Currie, L. A.; Limits for qualitative detection and quantitative determination: application to ra-diochemistry. Anal. Chem. [S.l.], v.40, n.3, p.586–593, 1968.
U.S. EPA Method 200.8 Determination of Trace Elements in Waters and Wastes by ICP-MS, Revision 5.4, 1994: Available at: <http://www.epa.gov/quality/determination-trace-elements-waters-and-wastes-inductively-coupled-plasma-mass-spectrometry>. Last accessed: 09 Aug. 2017.
Published
Issue
Section
License
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/