O cenário mundial de radiofármacos emissores de pósitrons para diagnóstico e estadiamento de câncer de próstata em medicina nuclear
DOI:
https://doi.org/10.15392/bjrs.v8i1.1115Keywords:
câncer de próstata, tomografia por emissão de pósitrons, radiofármacos, diagnóstico, padrão “standart”.Abstract
O objetivo deste trabalho foi realizar uma revisão narrativa do cenário mundial dos radiofármacos para diagnóstico e estadiamento de câncer de próstata (CaP). A revisão foi realizada utilizando o seletor de busca PUBMED a partir dos termos: (Prostate cancer and PET), 18F-FDG, N-3-[18F]fluoropropylputrescine [1], 11C- Acetate [2], 18F- Acetate, 11C-Colina [3], 18F-Fluorometilcolina, 68Ga-PSMA-HBED-CC, 18F-FDCFBC, 18F-FACBC, 18F-DCFPyL, Al18F-PSMA-11 e 18F-PSMA-1007. A pesquisa foi realizada considerando o período de 1989 a 2019. Os radiofármacos 11C-Colina e 18F-FCH foram durante vários anos os biomarcadores de imagem molecular padrão para CaP. Contudo, o 68Ga-PSMA-11, devido a melhor acurácia e facilidade de obtenção, viabilizou que clínicas de medicina nuclear, distantes de unidades produtoras de radiofármacos, realizassem exames no PET/CT ou PET/RM, tornando-se o radiofármaco mais utilizado atualmente em diagnóstico e estadiamento de CaP. Radiofármacos fluorados para próstata também foram desenvolvidos na tentativa de substituir o 68Ga-PSMA-11 e reduzir a dependência das clínicas com os geradores de 68Ge/68Ga. Nesse sentido, os radiofármacos fluorados mais destacados na literatura nos últimos cinco anos foram: 18F-FACBC, 18F-DCPyL, Al18F-PSMA-11 e 18F-PSMA-1007. Através dessa revisão, verificamos uma lacuna na literatura acerca da comparação entres esses radiofármacos devido às dificuldades de obtê-los para fins de pesquisa e, principalmente, às patentes do 18F-DCPyL e 18F-PSMA-1007. A literatura encoraja estudos de maior impacto na comparação da eficácia dos radiofármacos. A tendência é o crescimento de radiofármacos a base de 18F, como o 18F-PSMA-1007 e 18F-DCPyL devido, principalmente, a excreção renal tardia que eles proporcionam.- Views: 703
- PDF Downloads: 394
Downloads
References
HWANG, D. R.; LANG, L. X.; MATHIAS, C. J.; KADMON, D.; WELCH, M. J. N-3-[18F]fluoropropylputrescine as potential PET imaging agent for prostate and prostate derived tumors. J Nucl Med., v. 30, n. 7, p. 1205-1210, 1989.
ROEDA, D.; DOLLE, F.; CROUZEL, C. An improvement of [11C]acetate synthesis-non-radioactive contaminants by irradiation-induced species emanating from the [11C]carbon dioxide production target. Applied Radiation and Isotopes, v. 57, p. 857-860, 2002.
QUINCOCES, G.; PEÑUELAS, I.; VALERO, M., et al. Simple automated system for simultaneous production of 11C-labeled tracers by solid supported methylation. Applied Radiation and Isotopes, v. 64, p. 808-811, 2006.
TONON, T. C. A.; SCHOFFEN, J. P. F. Câncer de próstata: uma revisão da literatura. Revista Saúde e Pesquisa, v. 2, n. 3, p. 403-410, set./dez. 2009.
QUON, J. S.; MOOSAVI, B.; KHANNA, M.; FLOOD, T. A.; LIM, C. S.; SCHIEDA, N. False positive and false negative diagnoses of prostate cancer at multi-parametric prostate MRI in active surveillance. Insights Imaging, v. 6, n. 4, p. 449-463, 2015.
HOFFMANN, M. A.; WIELER, H. J.; SMOLKA, K.; SCHMELZ, H. U.; WALDECK, S. PSMA PET/CT and PET/MRI in prostate carcinoma diagnosis. Wehrmedizinische Monatsschrift, v. 62, n. 8, p. 266-270, 2018.
Revisão sistemática usando Prostate Cancer and PET. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed>. Acesso em: 04 jan. 2019.
HOSSEIN, J. Molecular imaging of prostate cancer: PET radiotracers. Available at: <https://www.ajronline.org/doi/full/10.2214/AJR.12.8816>. Last accessed: 04 jan. 2019.
HARA, T.; KOSAKA, N.; SHINOURA, N.; KONDO, T. PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med., v. 38, p. 842-847, 1997.
GIOVACCHINI, G.; GIOVANNINI, E.; LEONCINI, R., et al. PET and PET/CT with radiolabeled choline in prostate cancer: a critical reappraisal of 20 years of clinical studies. Eur J Nucl Med Mol Imaging, v. 44, p. 1751-1776, 2017.
BANERJEE, S. R.; PULLAMBHATLA, M.; BYUN, Y., et al. 68Ga-Labeled Inhibitors of Prostate-Specific Membrane Antigen (PSMA) for Imaging Prostate Cancer. J. Med. Chem., v. 53, 5333-5341, 2010.
TROVER, J. K.; BECKETT, M. L.; WRIGHT JR., J. L. Detection and characterization of the prostate‐specific membrane antigen (PSMA) in tissue extracts and body fluids. International Journal of Cancer, 1995. Available at: <https://doi.org/10.1002/ijc.2910620511>. Last accessed: 04 jan. 2019.
Revisão sistemática usando Prostate Cancer and PSMA. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed>. Acesso em: 04 jan. 2019.
EDER, M.; SCHAGER, M.; BAUDER, W. U., et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem., v. 23, p. 688-697, 2012.
ADVANCED BIOCHEMICAL COMPOUNDS. PSMA-11: Precursor for [68Ga]GaPSMA-11: PSMA: prostate-specific membrane antigen. Disponível em: <http://www.abx.de/Product/Index/9920>. Acesso em: 07 jan. 2019. .
CHO, S. Y.; GAGE, K. L.; MEASE, R. C., et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med., v. 53, p. 1883-1891, 2012.
ROWE, S. P.; GAGE, K. L.; FARAJ, S. F., et al. 18F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. Journal of nuclear medicine: official publication. J Nucl Med., v. 56, n. 7, p. 1003-1010, 2015. Doi: 56. 10.2967/jnumed.115.154336.
SZABO, Z.; MENA, E.; ROWE, S. P., et al. Initial evaluation of [(18)F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol., v. 17, p. 565-574, 2015.
AHMADZADEHFAR, H.; RAHBAR, K.; KURPIG, S., et al. Early side effects and first results of radioligand therapy with (177)Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-centre study. EJNMMI Res, v. 5, n. 1, p. 114, 2015.
JEMAL, A.; SIEGEL, R.; XU, J.; WARD, E. Cancer statistics, 2010. CA Cancer J Clin., v. 60, n. 5, p. 277-300, 2010. Doi: 10.3322/caac.20073.
SCHER, H. I.; FIZAZI, K.; SAAD, F., et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med., v. 367, n. 13, p. 1187-1197, 2012. Doi: 10.1056/NEJMoa1207506.
RYAN, C. J.; SMITH, M. R.; FIZAZI, K., et al. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, doubleblind, placebo-controlled phase 3 study. Lancet Oncol., v. 16, n. 2, p. 152-160, 2015. Doi: 10.1016/S1470-2045(14)71205-7.
SANTONI, M.; SCARPELLI, M.; MAZZUCCHELLI, R., et al. Targeting prostate-specific membrane antigen for personalized therapies in prostate cancer: morphologic and molecular backgrounds and future promises. J Biol Regul Homeost Agents, v. 28, n. 4, p. 555-563, 2014.
DEB, N.; GORIS, M.; TRISLER, K., et al. Treatment of hormone-refractory prostate cancer with 90Y-CYT-356 monoclonal antibody. Clin Cancer Res., v. 2, n. 8, p. 1289-1297, 1996.
KRATOCHWIL, C.; GIESEL, F. L.; EDER, M., et al. [Lu]Lutetium-labelled PSMA ligand-induced remission in a patient with metastatic prostate cancer. Eur J Nucl Med Mol Imaging., v. 42, n. 6, p. 987-988, 2015. Doi: 10.1007/ s00259-014-2978-1.
AGOSTINHO, D.; COSTA, M.; GALAIO, S. Xófigo vs 177Lu-labelled anti-PSMA, In: PRS 2017 – CONFERENCE "PROTEÇÃO RADIOLÓGICA NA SAÚDE 2017", 2017, Lisboa. Anais... Lisboa: Instituto Superior Técnico, 2017.
GIESEL, F. L.; CARDINALE, J.; SCHÄFER, M., et al. 18F-Labelled PSMA-1007 shows similarity in structure, biodistribution and tumour uptake to the theragnostic compound PSMA-617. Eur J Nucl Med Mol Imaging., v. 43, n. 10, p. 1929-1930, 2016.
GIESEL, F. L.; WILL, L.; LAWAL, I., et al. Intraindividual Comparison of 18F-PSMA-1007 and 18F-DCFPyL PET/CT in the Prospective Evaluation of Patients with Newly Diagnosed Prostate Carcinoma: A Pilot Study. J Nucl Med., v. 59, n. 7, p. 1076-1080, 2018. Doi: 10.2967/jnumed.117.204669.
DIETLEIN, M.; KOBE, C.; KUHNERT, G., et al. Comparison of [(18)F]DCFPyL and [(68)Ga]Ga-PSMA-HBED-CC for PSMA-PET Imaging in Patients with Relapsed Prostate Cancer. Mol Imaging Biol., v. 17, n. 4, p. 575-584, 2015. Doi: 10.1007/s11307-015-0866-0.
RAHBAR, K.; WECKESSER, M.; AHMADZADEHFAR, H., et al. Advantage of 18F-PSMA-1007 over 68Ga-PSMA-11 PET imaging for differentiation of local recurrence vs. urinary tracer excretion. Eur J Nucl Med Mol Imaging., v. 45, n. 6, p. 1076-1077, 2018.
MCCONATHY, J.; VOLL, R. J.; YU, W.; CROWE, R. J.; GOODMAN, M. M. Improved synthesis of anti-[18F]FACBC: improved preparation of labeling precursor and automated radiosynthesis. Appl Radiat Isot., v. 58, n. 6, p. 657-666, 2003.
OKA, S.; HATTORI, R.; KUROSAKI, F., et al. A preliminary study of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med., v. 48, p. 46-55, 2007.
Revisão sistemática usando 18F-FACBC. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/?term=18F-FACBC>. Acesso em: 10 jan. 2019.
NANNI, C.; ZANONI, L.; PULTRONE C., et al. (18)F-FACBC (anti1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid) versus (11)C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging., v. 43, n. 9, p. 1601-1610, 2016. Doi: 10.1007/s00259-016-3329-1.
CECI, F.; CASTELLUCCI, P.; CERCI, J. J; FANT, S. New aspects of molecular imaging in prostate cancer. Methods., v. 130, p. 36-41, 2017. Doi: 10.1016/j.ymeth.2017.07.009.
BACH-GANSMO, T.; NANNI, C.; NIEH, P. T., et al. Multisite Experience of the Safety, Detection Rate and Diagnostic Performance of Fluciclovine ((18)F) Positron Emission Tomography/Computerized Tomography Imaging in the Staging of Biochemically Recurrent Prostate Cancer. J. Urol., v. 197, n. 3 Pt 1, p. 676-683, 2017.
Revisão sistemática usando o termo Al18F. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed>. Acesso em: 24 jan. 2019.
D'SOUZA, C. A.; MCBRIDE, W. J.; SHARKEY, R. M.; TODARO, L. J.; GOLDENBERG, D. M. High-yielding aqueous 18F-labeling of peptides via Al18F chelation. Bioconjugate chem., v. 22, n. 9, p. 1793-1803, 2011.
MALIK, N.; BAUR, B.; WINTER, G.; RESKE, S. N.; BEER, A. J.; SOLBACH, C. Radiofluorination of PSMA-HBED via AlF chelation and biological evaluations in vitro. Mol Imaging Biol., v. 17, n. 6, p. 777-785, 2015. Doi: 10.1007/ s11307-015-0844-6.
MCBRIDE, W. J.; SHARKEY, R. M.; GOLDENBERG, D. M. Radiofluorination using aluminum-fluoride (Al18F). EJNMMI Res., v. 3, p. 36, 2013. Doi: 10.1186/2191-219X-3-36.
KERSEMANS, K.; DE MAN, K.; COURTYN, J., et al. Automated radiosynthesis of 18F-PSMA-11 for large scale routine use. Appl Radiat Isot., v. 135, p. 19-27, 2018. Doi: 10.1016/j.apradiso.2018.01.006.
ALONSO, O; SANTOS, G.; GIGLIO, J.; SAVIO, E.; ENGLER, H. PET/CT evaluation of prostate cancer patients with Al18F-PSMA-HBED-CC: a head-to-head comparison with 68Ga-PSMA-HBED-CC. J Nucl Med., v. 59, supplement 1, p. 1499, 2018.
CALAIS, J.; FENDLER, W. P.; HERRMANN, K.; EIBER, M.; CECI, F. Comparison of 68Ga-PSMA-11 and 18F-Fluciclovine PET/CT in a Case Series of 10 Patients with Prostate Cancer Recurrence. J Nucl Med., v. 59, n. 5, p. 789-794, 2018.
Revisão sistemática usando 18F-DCPyL and PSMA-1007. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed>. Acesso em: 10 jan. 2019.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/