Estudo preliminar da dose absorvida e efetiva da cisplatina radiomarcada
DOI:
https://doi.org/10.15392/bjrs.v8i1.1147Keywords:
Cisplatina, Monte Carlo, dose absorvida e efetivaAbstract
A cisplatina ou cis-diaminodicloroplatina (II), [(NH)3PtCl2], é um quimioterápico amplamente utilizado em diversos tipos de neoplasias mas apresenta efeitos colaterais muitas vezes severos. Diversas formas alternativas de administração desta droga visando maior eficácia no tratamento tem sido investigadas. Uma delas é o possível uso da sinergia nos efeitos radioquimioterápicos obtidos com a aplicação da cisplatina radiomarcada. Para avaliar a viabilidade desta estratégia, neste trabalho foram estimadas as doses absorvidas nos tecidos e a dose efetiva devido à administração da cisplatina marcada, considerando apenas os emissores do radioisótopo 195mPt. Dados de biodistribuição disponíveis na literatura, fantomas voxelizados de referência da ICRP e métodos Monte Carlo foram utilizados nas simulações. Os maiores valores de dose absorvida no fantoma feminino foram observados nos rins (3,34 mGy/MBq), baço, (2,65 mGy/MBq) e fígado (2,21 mGy/MBq). No fantoma masculino as doses absorvidas foram observadas nos rins (2,96 mGy/MBq), baço, (2,31 mGy/MBq) e fígado (1,73 mGy/MBq). As doses efetivas por unidade de atividade injetada calculadas para a 195mPt foram de 0,29 mSv para a mulher e 0,24 mSv para o homem. O estudo de biodistribuição dos radioisótopos das platina é uma etapa preliminar estudos posteriores em modelo animal e avaliação da viabilidade de futuro uso clínico. A contribuição dos demais radioisótopos produzidos na irradiação direta da cisplatina está em análise, e será motivo de trabalho posterior.
- Views: 192
- PDF Downloads: 161
Downloads
References
AREBERG, J.; BJÖRKMAN, S.; EINARSSON, L.; FRANKENBERG, B.; LUNDQVIST, H.; MATTSSON, S.; NORRGREN, K.; SCHEIKE, O.; WALLIN, R. Gamma camera imaging of platinum in tumours and tissues of patients after administration of 191Pt-cisplatin. Acta Onco-logica, v. 38, n. 2, p. 221-228, 1999.
CALLARI, M.; ALDRICH-WRIGHT, J. R.; DE SOUZA, P. L.; STENZEL, M. H. Polymers with platinum drugs and other macromolecular metal complexes for cancer treatment. Progress in Polymer Science, v. 39, n. 9, p. 1614-1643, 2014.
NEVES, Amanda P.; VARGAS, Maria D. Complexos de platina (II) na terapia do cân-cer. Revista Virtual de Química, v. 3, n. 3, p. 196-209, 2011.
DHAR, S., LIU, Z., THOMALE, J., DAI, H., & LIPPARD, S. J. Targeted single-wall carbon nanotube-mediated Pt (IV) prodrug delivery using folate as a homing device. Journal of the American Chemical Society, 130(34), 11467-11476, 2008.
LEAL, A. S.; MARZANO, I. M.; PEREIRA-MAIA, E. C.; JACIMOVIC, R. Investigation of the potential antitumor radioactive complex of platinum (II) with tetracycline. Journal of Radi-oanalytical and Nuclear Chemistry, v. 309, n. 1, p. 85-89, 2016.
SOARES, M.; MATTOS, J.; PUJATTI, P.; LEAL, A.; DOS SANTOS, W.; DOS SANTOS, R. Evaluation of the synergetic radio-chemotherapy effects of the radio labelled cisplatin for the treatment of glioma. Journal of Radioanalytical and Nuclear Chemistry, v. 292, n. 1, p. 61-65, 2012.
BODNAR, E. N.; DIKIY, M. P.; MEDVEDEVA, E. P., Photonuclear production and antitumor effect of radioactive. cisplatin (195mPt) J Radioanal Nucl Chem, 305:133–138, 2015.
DOWELL, J. A.; SANCHO, A. R.; ANAND, D; WOLF, W. Noninvasive measurements for studying the tumoral pharmacokinetics of platinum anticancer drugs in solid tumors, Advanced drug delivery reviews, v. 41, n. 1, p. 111-126, 2000.
AREBERG, J.; NORRGREN, K.; MATTSSON, S. Absorbed doses to patients from 191 Pt-, 193m Pt-and 195m Pt-cisplatin. Applied radiation and isotopes, v. 51, n. 5, p. 581-586, 1999.
SANCHO, A. R.; DOWELL, J.; PALEKAR, D.; ANAND, D.; KAWADA, T. K.; WOLF, W. Novel approaches to animal and human pharmacology: pharmacokinetic imaging with 195mPt-cisplatin and 195mPt-carboplatin and correlative functional imaging of the pathophysiological status of tumors. Radiopharmaceuticals for diagnosis and therapy, p. 293, 1998.
GARNUSZEK, P., LICIÁNSKA, I., SKIERSKI, J. S., KORONKIEWICZ, M., MIROWSKI, M., WIERCIOCH, R., & MAZUREK, A. P. Biological investigation of the plati-num (II)-[∗ I] iodohistamine complexes of potential synergistic anti-cancer activity. Nuclear medicine and biology, 29(2), 169-175, 2002.
ICRP, 2009. Adult Reference Computational Phantoms. ICRP Publication 110. Ann. ICRP 39 (2).
SATHEKGE, M.; WAGENER, J.; SMITH, S. V.; SONI, N.; MARJANOVIC-PAINTER, B.; ZINN, C.; VAN DE WIELE, C.; ASSELER, Y. D’; PERKINS, G.; ZEEVAART, J. R. Biodistribution and dosimetry of 195mPt-cisplatin in normal volunteers. Nuklearmedizin, v. 52, n. 6, p. 222-227, 2013.
AALBERSBERG, E. A.; DE WIT–VAN DER VEEN, B. J.; ZWAAGSTRA, O.; CODÉE–VAN DER SCHILDEN, K.; VEGT, E.; VOGEL, W. V. Preclinical imaging characteristics and quantification of Platinum- 195m SPECT, European Journal of Nuclear Medicine and Mo-lecular Imaging, v. 44, 1- 8. 2017.
LEAL, A. S.; JÚNIOR, A. D. C.; ABRANTES, F. M.; MENEZES, M. A. B. C.; FERRAZ, V.; CRUZ, T. S.; CARDOSO, V. N.; OLIVEIRA, M. C. Production of the radioactive antitumoral cisplatin. Applied radiation and isotopes, v. 64, n. 2, p. 178-181, 2006.
PELOWITZ, D. B. MCNPX User’s Manual, version 2.7.0. Report LA-CP-11-00438. Los Alamos National Laboratory, 2011.
ICRP, 2016. The ICRP Computational Framework for Internal Dose Assessment for Reference Adults: Specific Absorbed Fractions. ICRP Publication 133. Ann. ICRP 45(2).
HADID, L.; GARDUMI, A.; DESBRÉE, A. Evaluation of Absorbed and Effective Doses to Patients from Radiopharmaceuticals Using the ICRP 110 Reference Computational Phantoms and ICRP 103 Formulation. Radiat Prot Dosim, 2013; 156(2):141–159.
ZANKL, M.; SCHLATTL, H.; PETOUSSI-HENSS, N.; HOESCHEN, C. Electron Specific Absorbed Fractions for the Adult Male and Female ICRP/ICRU Reference Computational Phantoms. Phys Med Biol, 2012; 57(14):4501–4526.
ICRP, 2008. Nuclear Decay Data for Dosimetric Calculations. ICRP Publication 107. Ann. ICRP 38 (3).
ICRP, 2007. The 2007 Recommendations of the International Commission on Radiolog-ical Protection. ICRP Publication 103. Ann. ICRP 37 (2-4).
DASARI, S.; TCHOUNWOU, P. B. Cisplatin in cancer therapy: molecular mechanisms of action. European journal of pharmacology, v. 740, p. 364-378, 2014.
LOENING A. M.; GAMBHIR S. S. AMIDE: A Free Software Tool for Multimodality Medical Image Analysis, Molecular Imaging, 2(3):131-137, 2003.
STABIN, M. G.; SPARKS, R. B.; CROWE, E. OLINDA/EXM: the second-generation per-sonal computer software for internal dose assessment in nuclear medicine. The Journal of Nu-clear Medicine, v. 46, n. 6, p. 1023, 2005.
EMAMI, B. Tolerance of normal tissue to therapeutic radiation. Reports of radiotherapy and Oncology, v. 1, n. 1, 2013.
LLACER, J.; DEASY, J. O.; BORTFELD, T. R.; SOLBERG, T. D.; PROMBERGER, C. Absence of multiple local minima effects in intensity modulated optimization with dose–volume constraints. Physics in Medicine & Biology, v. 48, n. 2, p. 183, 2003.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/