Effect of Mounting Orientation on Testing Equipment on Elastic Compliance of Clamped SE(T) Specimens: an exploration
DOI:
https://doi.org/10.15392/2319-0612.2022.1863Keywords:
Clamped SE(T), compliance, rotation, machine stiffnessAbstract
The accurate evaluation of fracture mechanics properties is key to the safety of operation of high responsibility structures such as nuclear reactor components. This paper evaluates the impact of mounting orientation on the test machine of clamped SE(T) (SE(T)c) specimens on its compliance. The elastic unloading compliance is a commonly used technique to measure the crack depth of specimens within fracture mechanics tests. Inaccurate measurements affect reliability of resulting measured properties. Two mounting orientations are evaluated in this paper together with two SE(T)c specimens with different width-to-thickness ratios (W/B=2 and W/B=4). Conclusions show that machine stiffness is significantly different in both orientations, and such value has the potential to affect crack depth prediction. On the other hand, the analysis scope of this work was unable to detect significant differences between both orientations, probably because loading was limited to maintain specimen integrity. Further investigation is necessary to precisely adress the impact of this effect.
- Views: 89
- PDF Downloads: 81
Downloads
References
Andrade, L. G. F.; Donato, G. H. B. Effects of crack tunneling and plasticity on the elastic unloading compliance technique for SE(B) – current limitations and proposals. Procedia Structural Integrity, v.13, p.1908-1914. DOI: https://doi.org/10.1016/j.prostr.2018.12.271
Moreira, F. C.; Donato, G. H. B. Effects of side-grooves and 3-D geometries on compliance solutions and crack size estimations applicable to C(T), SE(B) and clamped SE(T) specimens. Proceedings of the ASME 2013 pressure vessels & piping division. Paris, France, 2013.
Cravero, S.; Ruggieri, C. Estimation Procedure of J-resistance curves for SE(T) fracture specimens using unloading compliance. Engineering Fracture Mechanics, v. 74, p.2735-2757. 2007. DOI: https://doi.org/10.1016/j.engfracmech.2007.01.012
American Society For Testing And Materials, 2018. ASTM E1820: Standard Test Method for Measurement of Fracture Toughness, Philadelphia.
LOSS, F. J.; GRAY, R. A.; MENKE, B. H. J integral characterization of low upper shelf A302-B steel plate. Structural integrity of water reactor pressure boundary components. Progress report ending 30 November 1977, Washington, p. 18-34, May 1978.
CRAVERO, S.; RUGGIERI, C. Estimation procedure of J-resistance curves for SE(T) fracture specimens using unloading compliance. Engineering fracture mechanics, n. 74, January 2007. DOI: https://doi.org/10.1016/j.engfracmech.2007.01.012
SHEN, G.; TYSON, W. R. Crack size evaluation using unloading compliance in single-specimen single-edge-notched tension fracture toughness testing. Journal of testing and evaluation, n. 37, 2009. DOI: https://doi.org/10.1520/JTE102368
American Petroleum Institute, 2013. API-5L: Specification for line pipe.
Dassault Systèmes Abaqus [computer software]. 2020. Retrieved from https://www.3ds.com/products-services/simulia/products/abaqus/.
Autodesk Inventor [Computer software]. 2020. Retrieved from Figure 4: Machine stiffness estimation results.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/