Assessment of the use of tailings based on the legal requirements for radiation protection, from niobium mining in Minas Gerais – Brazil
DOI:
https://doi.org/10.15392/2319-0612.2023.2173Keywords:
Natural radioactive, Mining tailings, NiobiumAbstract
Brazil is the world's largest supplier of niobium to industry, accounting for 98% of world production, with Minas Gerais supplying 80% of total production. The mineral exploration industry generates millions of tons of waste annually. In several mining industries, waste is considered a burden for companies. Based on the radiation protection exemptions for the disposal of mining waste, the study analyses the use of waste as a raw material for the construction industry. The minimum dose rate found for gamma radiation in the waste was 0.24 µSv/h and a maximum dose of 0.33 µSv/h, which corresponds to an annual dose above the population exposure limit. The radio concentrations from gamma spectrometric analyses with the Ge(HP) detector for the two samples are a maximum of 240 Bq/kg for Ra-226 and a maximum of 840 Bq/kg for Ra-228. Despite the dose values determined for gamma radiation, CNEN Resolution 179 of 2014 considers materials with natural radioactive concentrations of radium 226 and 228 of up to 1000 Bq/kg suitable for use in the cement industry. Nevertheless, further analysis must be carried out. Since the tailings contain a concentration of Ra-226 and the radio is a source of radon gas, new analyses need to be carried out targeting the exhalation of radon.
- Views: 149
- XML Downloads: 27
- PDF Downloads: 50
Downloads
References
H. J. Seer and L. C. D. Moraes, “Nióbio,” Recur. Minerais Minas Gerais, p. 27, 2018, [Online]. Available: http://recursomineralmg.codemge.com.br/substancias-minerais/niobio/.
D. J. G. Barbosa and F. M. Dias, “Utilização dos rejeitos de mineração na construção civil,” An. eletrônicos da 17a Sem. Iniciação Científica e 8a Extensão do Cent. Univ. Católica do Leste Minas Gerais – Unileste, p. 1, 2016, [Online]. Available: https://unileste.catolica.edu.br/portal/wp-content/uploads/2020/05/UTILIZACAO-DOS-REJEITOS-DE-MINERACAO-NA-CONSTRUCAO-CIVIL.pdf.
J. M. Franco de Carvalho, P. A. M. Campos, K. Defáveri, G. J. Brigolini, L. G. Pedroti, and R. A. F. Peixoto, “Low Environmental Impact Cement Produced Entirely from Industrial and Mining Waste,” J. Mater. Civ. Eng., vol. 31, no. 2, p. 04018391, Feb. 2019, doi: 10.1061/(asce)mt.1943-5533.0002617.
F. P. Carvalho et al., “Radioactivity in the environment around past radium and uranium mining sites of Portugal,” J. Environ. Radioact., vol. 96, no. 1–3, pp. 39–46, 2007, doi: 10.1016/j.jenvrad.2007.01.016.
J. N. S. Filho, S. N. Da Silva, G. C. Silva, J. C. Mendes, and R. A. F. Peixoto, “Technical and Environmental Feasibility of Interlocking Concrete Pavers with Iron Ore Tailings from Tailings Dams,” J. Mater. Civ. Eng., vol. 29, no. 9, p. 04017104, 2017, doi: 10.1061/(asce)mt.1943-5533.0001937.
W. C. Fontes, J. C. Mendes, S. N. Da Silva, and R. A. F. Peixoto, “Mortars for laying and coating produced with iron ore tailings from tailing dams,” Constr. Build. Mater., vol. 112, pp. 988–995, Jun. 2016, doi: 10.1016/J.CONBUILDMAT.2016.03.027.
S. A. Miller and F. C. Moore, “Climate and health damages from global concrete production,” Nat. Clim. Chang., vol. 10, pp. 439–443, 2020, doi: 10.1038/s41558-020-0733-0.
G. Habert et al., “Environmental impacts and decarbonization strategies in the cement and concrete industries,” Nat. Rev. Earth Environ., vol. 1, pp. 559–573, 2020, doi: 10.1038/s43017-020-0093-3.
I. C. G. Spacov, “Monitoração de trabalhadores expostos à radiação natural em minas no seridó do nordeste brasileiro,” p. 79, 2016, [Online]. Available: https://repositorio.ufpe.br/bitstream/123456789/18663/1/ISABEL CRISTINA GUERRA SPACOV -TESE DE DOUTORADO - PROTEN.pdf.
A. R. Alves and A. dos R. Coutinho, “Life cycle assessment of niobium: A mining and production case study in Brazil,” Miner. Eng., vol. 132, pp. 275–283, Mar. 2019, doi: 10.1016/J.MINENG.2018.11.041.
SÉRGIO, P. et al. Sustentabilidade Socioambiental da Mineração. Mineração / BNDES, v. 1, n. Setorial 47, p. 333–390, 2018.
SILVA, A. P. M.; VIANA, J. P.; CAVALCANTE, A. L. B. Diagnóstico dos Resíduos Sólidos da Atividade de Mineração de Substâncias Não Energéticas - Relatório de PesquisaRelatório de Pesquisa. Brasília: 2012. Disponível em: <http://www.ipea.gov.br>.
FRANÇA, A. L. F.; SILVA FILHO, C. R. V. Plano nacional de resíduos sólidos. Brasília, Brasil: Edições Câmara, 2022. Disponível em: <https://sinir.gov.br/>.
CARNEIRO, P. F. P. Levantamento dos níveis de radioatividade natural no estuário do complexo industrial de Suape no estado de Pernambuco. 2016. Tese (Doutorado), Departamento Nuclear, Universidade Federal de Pernambuco, Recife, 2016.
CNEN. Norma CNEN NN 4.01-Resolução 208/16 - Requisitos de segurança e proteção radiológica para instalações mínero-industriais. Comissao Nacional de Energia Nuclear, 2016.
CNEN. Norma CNEN NN 8.01, Resolução CNEN 167/14 - Gerência de rejeitos radioativos de baixo e médio níveis de radiação. Comissao Nacional de Energia Nuclear, p. 45, 2014a.
CNEN. Norma CNEN NN 3.01. Resolução 164/14-Diretrizes Básicas de Protecção Radiológica. Comissao Nacional de Energia Nuclear, p. 22, 2014b.
CNEN. Posição Regulatória 3.01/001:2011 Critérios de exclusão, isenção e dispensa de requisitos de proteção radiológica. Comissao Nacional de Energia Nuclear, 2011.
OECD/NEA. Exposure to Radiation From The Natural Radioactivity in Building Materials. Paris, FR, 1979. Disponível em: <https://www.oecd-nea.org/rp/reports/1979/exposure-to-radiation-1979.pdf>.
CNEN. Resolução CNEN/CD no 179 - Uso de Fosfogesso na Agricultura e na Indústria Cimenteira. Comissao Nacional de Energia Nuclear, v. 23, p. 28–57, 2014c.
CARMO, R. F. DO. Avaliação dos níveis de radioatividade natural e do risco radiológico na foz do rio doce antes e depois do rompimento da barragem de fundão. 2018; Tese (Doutorado) -Instituto de Radioproteção e Dosimetria – Comissão Nacional de Energia Nuclear, Rio de Janeiro, 2018.
CNEN. Posição Regulatória 3.01/007:2005 - Niveis de Intervenção e de Ação para Exposição Crônica. Comissao Nacional de Energia Nuclear, p. 3, 2005.
IAEA. Radiation Protection and Safety of Radiation Sources : International Basic Safety Standards. IAEA safety standards series, ISSN 1020–525X ; no. GSR Part 3, 2014.
J. EBERTH, J.; SIMPSON, J. From Ge(Li) detectors to gamma-ray tracking arrays-50 years of gamma spectroscopy with germanium detectors. Progress in Particle and Nuclear Physics, v. 60, n. 2, p. 283–337, 2008.
PALACIOS, E.; NAPOLITANO, C. M. Situação Radiossanitária de uma Mina de Pirocloro da Mineração Catalão de Goias S.A. Instituto de Energia Atomica-São Paulo, n. 065, p. 22, 1979.
ICRU. Measurement and Reporting of Randon Exposures. Journal of the ICRU, v. 12, n. 88, p. 208, 2015.
UNSCEAR 2000. Sources and Effects of Ionizing Radiation:Exposures from natural radiation sources. Journal of Radiological Protection, v. 21, n. 1, p. 83–85, mar. 2001.
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/