Dose response assessment of conventional Fricke: a relationship between UV-Visible and nuclear magnetic resonance techniques
DOI:
https://doi.org/10.15392/2319-0612.2023.2194Keywords:
Conventional Fricke, UV-Visible, Nuclear magnetic resonanceAbstract
Conventional Fricke is an aqueous ferrous sulfate solution that has been widely studied in the field of chemical dosimetry. The feasibility of its use has become attractive for high dose measurements that are of clinical interest in the field of radiotherapy and for industrial purposes, in the irradiation of blood bags and the sterilization of surgical material. The derivation of the absorbed dose of Fricke depends on the radiation-induced oxidation of iron (II) ions (Fe2+) present in the aqueous solution to iron (III) ions (Fe3+), which occurs after exposure to ionising radiation. In this paper, it is proposed to evaluate the dose response of the Fricke dosimeter using two different analytical techniques, ultraviolet-visible spectrophotometry (UV-Vis) and nuclear magnetic resonance spectroscopy (NMR). Twelve groups of samples were analysed in triplicate, irradiated with doses between 0 and 800 Gy, using a cobalt-60 source (60Co). The dose rate of Fricke dosimeters was evaluated against the practical values obtained. The different methods allowed an analytical correlation of the species of oxidised iron (Fe3+) using a linearity curve as a function of the applied radiation dose.
- Views: 153
- PDF Downloads: 116
- XML Downloads: 51
Downloads
References
FRICKE, H., MORSE, S. The chemical action of roentgen rays on dilute ferrous sulfate solutions as a measurement of dose. Am. J. Roentgen. Radium Ther. Nucl. Med., v.18, p.420, 1927.
ATTIX, F. H. Introduction to radiological physics and radiation dosimetry, 1th ed.: John Wiley & Sons, p.418-425, 2004.
GREENING, J. R. Fundamentals of Radiation Dosimetry. Medical Physics, handbooks 15, Second Edition. Published by Taylor & Francis Group, p.125-130, 1985.
ISO/ASTM 51026-15, Standard Practice for Using the Fricke Dosimetry System, ASTM International, West Conshohocken, PA, 2015.
SCHREINER L. J. Review of Fricke gel dosimeters. J. Phys.: Conf. Ser. 3- Third International Conference on Radiotherapy Gel Dosimetry, p. 9-21, 2004.
TURNER, J.E. Atoms, Radiation, and Radiation Protection. 3th ed. WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim, p.285, 2007.
DE ALMEIDA, C.E., OCHOA, R., DE LIMA, M.C., DAVID, M.G., PIRES, E.J., PEIXOTO, J.G., SALATA, C., BERNAL, M.A. A feasibility study of Fricke Dosimetry as an absorbed dose to water standard for192Ir HDR sources. Plos One, v.9, p.1-13, 2014.
NONATO DE OLIVEIRA, L.; OLIVEIRA DO NASCIMENTO, E.; CALDAS, L.V.E. New Fricke Xylenol Liquid detector doped with methylene blue (FXL-mblue) irradiated with red LED light. J. Lumin., nº 117730, v.230, p.1-19, 2021.
ALVES, A.V.S.; DE ALMEIDA,W.S; SUSSUCHI, E.M.; LAZZERI, L.; D'ERRICO, F. ; DE SOUZA, S.O. Investigation of chelating agents/ligands for Fricke gel dosimeters. Radiat. Phys. Chem., v.150, p. 151-156, 2018.
GORE, J. C.; KANG, Y. S; SCHULZ, R.J. Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys. Med. Biol., no 10, v. 29, p.1189-1197, 1984.
COLLURA, G.; GALLO, S.; TRANCHINA, L.; ABBATE, B.F.; BARTOLOTTA, A.; D’ERRICO.,F.; MARRALE, M. Analysis of the response of PVA-GTA Fricke-gel dosimeters with clinical magnetic resonance imaging. Nucl Instrum Methods Phys Res B: Beam Interactions with Materials and Atoms. v. 414, p.146-153, 2018.
VERGOTE, K.; DEENE, Y. D.; DUTHOY, W.; GERSEM, W. D.; NEVE, W. D.; ACHTEN, E.; WAGTER, C. D. Validation and application of polymer gel dosimetry for the dose veri_cation of an intensity-modulated arc therapy (IMAT) treatment. Phys. Med. Biol., n. 2, v. 49, p. 287- 305, 2004.
CHU, W.C. Radiation Dosimetry Using Fricke-infused Gels and Magnetic Resonance Imaging. Proc. Natl. Sci. Counc. ROC (B), no. 1, v. 25, p. 1-11, 2001.
SECO, J.; CLASIE, B. and PARTRIDGE M. Review on the characteristics of radiation detectors for dosimetry and imaging. Med. Biol., v.59, p. R303–R347, 2014.
MARRALE, M.; COLLURA, G.; GAGLIARDO, C.; GALLO, S.; IACOVIELLO, G.; LONGO, A.; TRANCHINA, L.; CAPUTO, V.; D'ERRICO, F.; GUELI, A.M.; MIDIRI, M.; PANZECA, S.; BRAI, M. Nuclear magnetic resonance relaxometry and imaging for dosimetry with agarose Fricke gel, Phys. Med., v.32, p.42, 2016.
SHEYKHOLESLAMI, N.; PARWAIE, W.; VAEZZADEH, V.; BABAIE, M.; FARZIN, M.; GERAILY, G.; KARIMI, A.H. Dual application of Polyvinyl Alcohol Glutaraldehyde Methylthymol Blue Fricke hydrogel in clinical practice: Surface dosimeter and bolus. Appl. Radiat. Isot. v. 197, 2023.
ARANGO, E. M.; PICKLER, A.; MANTUANO, A.; SALATA, C.; ALMEIDA. C. E.; Feasi-bility study of the Fricke chemical dosimeter as an independent dosimetric system for the small animal radiation research platform (SARRP). Med. Phys, v.71, p. 168-175, 2020.
BRYANT, T. H. E.; RIDLER, T. P. Factors Affecting the Measurement of the Extinction Co-efficient of Fe3+ Ions in a Fricke Dosimeter Solution. H. Phys., no3, v.15, p 263-268, 1968.
SHORTT, K. R. The temperature dependence of G (Fe3+) for the Fricke dosemeter. Phys. Med. Biol., no 12, v. 34, p.1923-1926, 1989.
SCHARF, K. and LEE, R.M. Investigation of spectrophotometric method of measuring ferric ion yield in ferrous sulfate dosimeter. Radiat. Res., v. 16, p.115–124, 1962.
KLASSEN, N. V, SHORTT, K. R, SEUNTJENS, J. and ROSS, C. K. Fricke dosimetry: the difference between G (Fe3+) for 60Co-rays and high-enerGy x-rays. Phys. Med. Biol., v.44 p.1609–1624, 1999.
PODGORSAK, M. B; SCHREINER, L.J. Nuclear magnetic relaxation characterization of ir-radiated Fricke solution. Med. Phys.; v.19, p. 87-95, 1992.
LEPAGE, M. et al. Magnetization transfer imaging for polymer gel dosimetry. Phys. Med. Biol., n. 11, v. 47, p. 1881, 2002.
ARAUJO, Bárbara C.R et al.; A new formulation for polymer fricke dosimeter and an innova-tive application of neural network to study dose profile from spin-echo NMR data. Rad. Phys. and Chem., v. 184, p. 109-444, 2021.
MANTUANO, A. et al; A pilot study of a postal dosimetry system using the Fricke dosimeter for research irradiators, Phy. Med., n. 11, v. 84, p. 214-219, 2021.
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/