Elementary characterization of samples of Portland cement, natural gypsum and phosphogypsum mortars from Brazil
DOI:
https://doi.org/10.15392/bjrs.v7i2A.546Keywords:
X-ray fluorescence, construction materials, gypsum, phosphogypsum, Portland cement.Abstract
Portland cement, the basic ingredient of concrete and is manufactured by crushing, milling and proportioning limestone, sand, clay, iron ore and secondary materials such as shells, chalk or marl combined with shale slate or blast furnace slag, fly ash, gypsum, phosphogypsum, and some others. Evaluating the physical and mineralogical characteristics of the cement and its chemical composition is essential to establish the quality of the product. Therefore, the objective of this work was to characterize and quantify the most common chemical elements in the samples of Brazilian Portland cement, natural gypsum, and phosphogypsum mortars by means of X-ray dispersive energy spectroscopy (EDXRF), as well as to evaluate the strength of these mortars. For analysis of the compressive strength, initially prepared samples were submitted to a destructive mechanical test. Subsequently samples were milled and compacted to form thin tablets, which were submitted to the EDXRF analysis. The qualitative and quantitative analyzes showed that for phosphogypsum mortar the largest mass fractions were found of 49.8±2.5% (Si), 24.66±0.96% (S) and 22.10±0.42% (Ca). For gypsum mortar those values were found of 43.41±0.45% (Ca), 33.8 ± 0.8% (S) and 18.9±1.2% (Si), respectively; and for Portland cement mortar, the predominant elements in those samples have the mass fractions of 64.20±0.52% (Ca) and 27.3±1.5% (Si). The results showed that obtained values of mass fraction of the elements Si, S, K, Ca, Ti, Fe are in rather good agreement with quantities indicated for manufacture. Besides, gypsum and phosphogypsum presented almost the same composition and compressive strength.
- Views: 180
- PDF Downloads: 228
Downloads
References
METHA, P. K.; MONTEIRO, P. J. M. CONCRETE microstructure, properties and materials. California, United States of America, 2001.
NEVILLE, A.M.; BROOKS, J. J. Concrete Technology. Pearson: England, 2010.
British Cement Association. Concrete Practice, 3ª ed. 2002.
MATOS, T. H. C. Caracterização hidro-mecânica do fosfogesso e das misturas solo-fosfogesso. MSc dissertation. Universidade de Brasília Departamento de Energia Civil e Ambiental, Brasília, 2011.
COTA, S.D.S.; JACOMINO, V.M.F.; Taddei, M.H.T.; NASCIMENTO, M.R. Modelagem numérica do impacto ambiental associado à aplicação de fosfogesso como cobertura de aterros sanitários. Associação Brasileira de Águas Subterrâneas – ABAS. Águas Subterrâneas. v. 26.p. 27-42, 2012.
CANUT, M. M. C. Estudo da viabilidade do uso do resíduo fosfogesso como material de construção. (MSc dissertation). Programa de Pós-Graduação em Construção Civil – Universidade Federal de Minas Gerais, Belo Horizonte, 2006.
BRIENZA, S. M. B.; FILHO, V. F. N.; MOREIRA, S.; VIVES, A. E. S. Emprego da fluorescência de raios X dispersiva para avaliação da poluição por metais pesados em amostras de água e sedimentos de lagos. São Paulo, Brazil, 2002.
BUENO, M. I. M. J.; NAGATA, N; PERALTA-ZAMORA P. G. Métodos matemáticos para correção de interferências espectrais e efeitos interelementos na análise quantitativa por fluorescência de raios X. Química Nova. V 24, nº 4, 531-539, 2001.
SILVA, R. M. C. E. Utilização da técnica de fluorescência de raios X com microssonda (µ - XRF) aplicada a amostras de interesse arqueológico. Doctor Thesis, São Paulo, 2002.
Associação Brasileira de Normas Técnicas. NBR 7215: Cimento Portland – Determinação da resistência à compressão. Rio de Janeiro, 1996.
NARLOCH, D.C.; PASCHUK, S.A.; CASALI, J. M.; CORRÊA, J. N.; DEL CLARO, F.; MACIOSKI, G. Medidas da concentração de radônio-222 em cimento, fosfogesso e gesso. X Congreso Regional Latinoamericano IRPA de Protección y Seguridad Radiológica “Radioprotección: Nuevos Desafíos para un Mundo en Evolución”, Buenos Aires, Argentina, 2015.
FERRARIS, C. F.; GUTHRIE, W.; AVILÉS, A. I.; HAUPT, R.; MACDONALD, B. S. NIST Special Publication. Certification of SRM 114q: Part I. NIST – National Institute of Standards and Technology. Available at: <http://www.nist.gov/srm/upload/SP260-161.pdf>. Last accessed: 20 dec 2016.
EL-AFIFI, E. M.; HILAL, M. A.; ATTALLAH, M. F.; EL-REEFY, S. A. Characterization of Phosphogypsum Wastes Associated with Phosphoric Acid and Fertilizers Production. Journal of Environmental Radioactivity 100. Elsevier. p. 407-412, 2009.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/