Radiation hazard indices in the application of phosphogypsum mixtures as a building material: proposal for a Brazilian regulation

Authors

  • Marcelo Francis Máduar Instituto de Pesquisas Energéticas e Nucleares https://orcid.org/0000-0002-4448-003X
  • Barbara Paci Mazzilli Instituto de Pesquisas Energéticas e Nucleares
  • Marcelo Bessa Nisti Instituto de Pesquisas Energéticas e Nucleares

DOI:

https://doi.org/10.15392/bjrs.v7i3.839

Keywords:

phosphogypsum, NORM, radiation hazard index

Abstract

Phosphogypsum (PG), a by-product from the phosphoric acid industry, is being worldwide stockpiled, posing environmental problems. Viability of the PG safe re-use in civil construction has been studied, as PG can contain natural radionuclides in significant concentrations. We propose a policy for using PG as a building material, limiting the total concentration of 226Ra plus 228Ra by mixing PG with natural gypsum. It was concluded that PG from the largest Brazilian deposits could be used without any dilution, when the sum of the activity concentrations of 226Ra and 228Ra does not exceed 150 Bq kg-1. For higher values, the approach is to mix PG with increasing amounts of natural gypsum, so that the final concentration does not exceed 1000 Bq kg-1. We show that PG re-use in such a way is feasible in terms of radiological protection and recommended to minimize PG piles environmental impact

Downloads

Download data is not yet available.

Author Biographies

Marcelo Francis Máduar, Instituto de Pesquisas Energéticas e Nucleares

CMR - Centro de Metrologia das Radiações

Barbara Paci Mazzilli, Instituto de Pesquisas Energéticas e Nucleares

CMR - Centro de Metrologia das Radiações

Marcelo Bessa Nisti, Instituto de Pesquisas Energéticas e Nucleares

CMR - Centro de Metrologia das Radiações

References

INTERNATIONAL ATOMIC ENERGY AGENCY (2013). Management of NORM Residues (IAEA-TECDOC-1712), Vienna.

KOVLER, K. (2003). Radiological constraints of using building materials and industrial by-products in construction, Construction and Building Materials, 23(1), 246-253.

EUROPEAN COMMISSION. Laying Down Basic Safety Standards for Protection Against the Dangers Arising From Exposure To Ionising Radiation. World Health, 0254:126, 2013.

INTERNATIONAL ATOMIC ENERGY AGENCY (2004). Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements Part 3. International Atomic Energy Agency Vienna, 3:436.

MAZZILLI, B. P., PALMIRO, V., SAUEIA, C. H. R. AND NISTI, M. B. (2000). Radiochemical characterization of Brazilian phosphogypsum. Journal of Environmental Radioactivity, 49(1), 113-122.

SAUEIA, C. H. R. AND MAZZILLI, B. P. (2006). Distribution of natural radionuclides in the production and use of phosphate fertilizers in Brazil. Journal of Environmental Radioactivity, 89(3), 229-239.

SAUEIA, C. H. R., MAZZILLI, B. P. AND TADDEI, M. H. T. (2009). Sequential radioanalytical method for the determination of U and Th isotopes, 226Ra and 210Po using alpha spectrometry in samples of the Brazilian phosphate industry. Journal of Radioanalytical and Nuclear Chemistry, 281(2), 201-204.

MÁDUAR, M. F. AND HIROMOTO, G. (2004). Evaluation of indoor gamma radiation in dwellings. Radiation Protection Dosimetry, 111(2), 221-228.

MANIĆ, V., MANIĆ, G., NIKEZIC, D. AND KRSTIC, D. (2012). Calculation of dose rate conversion factors for 238U, 232Th and 40K in concrete structures of various dimensions, with application to Niš, Serbia. Radiation Protection Dosimetry, 152, 361-368.

MÁDUAR, M. F., CAMPOS, M. P., MAZZILLI, B. P. AND VILLAVERDE, F. L. (2011). Assessment of external gamma exposure and radon levels in a dwelling constructed with phosphogypsum plates. Journal of Hazardous Materials, 190, 1063-1067.

EUROPEAN COMMISSION. Radiological protection principles concerning the natural radioactivity of buildings materials, volume 112 (1999).

RIGHI, S. GUERRA, R. JEYAPANDIAN, M. VERITÀ, S. AND ALBERTAZZI, A. (2009). Natural radioactivity in Italian ceramic tiles. Radioprotection, 44(5), 413-419.

FERREIRA, A. O. AND PECEQUILO, B. R. S. (2011). Natural radioactivity assessment by gamma spectrometry in some commercially-used granites from Paraná State, Brazil: Preliminary results. Radioprotection, 46(6), 43-47.

LLOPE, W. J. (2011). Activity concentrations and dose rates from decorative granite countertops. Journal of Environmental Radioactivity, 102(6), 620-629.

FERREIRA, A. O, PECEQUILO, B. R. S. AND AQUINO, R. R. (2011). Application of a Sealed Can Technique and CR-39 detectors for measuring radon emanation from undamaged granitic ornamental building materials. Radioprotection, 46(6), 49-54.

SILVA, P. S. C., MAZZILLI, B. P. AND FÁVARO, D. I. T. (2006). Distribution of radionuclides and elements in Cubatão river sediments. Journal of Radioanalytical and Nuclear Chemistry, 269(3), 767-771.

OLIVEIRA, S. M. B., SILVA, P. S. C., MAZZILLI, B. P., FÁVARO, D. I. T., SAUEIA, C. H. (2007). Rare earth elements as tracers of sediment contamination by phosphogypsum in the Santos estuary, southern Brazil. Applied Geochemistry, 22, 837-850.

CAMPOS, M. P., COSTA, L. J. P., NISTI, M. B. AND MAZZILLI, B. P. (2017). Phosphogypsum recycling in the building materials industry: assessment of the radon exhalation rate. Journal of Environmental Radioactivity, 172, 232-236.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14717: Chapa de gesso acartonado – Determinação das características físicas, 2001.

KARPOV, V. I. AND KRISIUK, E. M. (1990). Estimation of indoor gamma dose rate. Health Physics, 39, 819-821.

STEGER, F., KUNSCH, B. AND BUCHNER, I. (1992). ÖNORM S 5200: radioactivity in building materials (A standard in Austria to limit natural radioactivity in building materials). Radiation Protection Dosimetry, 45(1-4), 721-722.

BOSSEW, P. (2003). The radon emanation power of building materials, soils and rocks. Applied Radiation and Isotopes, 59(5-6), 389-392.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14715-2 - Chapas de gesso para drywall – Parte 2: determinação das características físicas, 2010.

COSTA, L. J. P. Estudo da exalação de radônio em placas e tijolos de fosfogesso de diferentes procedências. Master thesis, Instituto de Pesquisas Energéticas e Nucleares, 2011.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14715-1 - Chapas de gesso para drywall - Parte 1: requisitos, 2010.

SANTOS, A. J. G., SILVA, P. S. C., MAZZILLI, B. P. AND FÁVARO, D. I. T. (2006). Radiological characterisation of disposed phosphogypsum in Brazil: Evaluation of the occupational exposure and environmental impact. Radiation Protection Dosimetry, 121(2), 179-185.

NISTI, M. B., CAMPOS, M. P. AND MAZZILLI, B. P. (2014). Natural radionuclides content and radon exhalation rate from Brazilian phosphogypsum piles. Journal of Radioanalytical and Nuclear Chemistry, 299(1), 261-264.

CAMPOS, M. P. AND PECEQUILO, B. R. S. (2004). Dosimetric assessment from 212Pb inhalation at a thorium purification plant. Radiation Protection Dosimetry, 111(3), 323-326.

COMISSÃO NACIONAL DE ENERGIA NUCLEAR (2014). Uso do fosfogesso na agricultura e na indústria cimenteira. Resolução CNEN 179/14. Brasil, 2014.

Downloads

Published

2019-07-04

How to Cite

Máduar, M. F., Mazzilli, B. P., & Nisti, M. B. (2019). Radiation hazard indices in the application of phosphogypsum mixtures as a building material: proposal for a Brazilian regulation. Brazilian Journal of Radiation Sciences, 7(3). https://doi.org/10.15392/bjrs.v7i3.839

Issue

Section

Articles

Most read articles by the same author(s)