Direct determination of aluminum in low-enriched UAlx targets (UAlx-Al) by Inductively Coupled Plasma Optical Emission Spectrometry

Authors

DOI:

https://doi.org/10.15392/bjrs.v9i1A.1247

Keywords:

UAlx, molybdenum, ICP OES, spectral interference

Abstract

The production of molybdenum-99 (99Mo) using low-enriched uranium targets (< 20% 235U) dispersed in aluminum (UAlx) is a very promising strategy towards the independence in 99Mo local production. A thorough control must be performed to ensure that these targets meet the regulatory requirements to achieve the expected efficiency in the reactor. The determination of the targets’ composition is of high interest, because the distribution of Al in different phases may have an impact on the U concentration. Among the techniques used for this purpose, inductively coupled plasma optical emission spectrometry (ICP OES) stands out because of its high sensitivity and precision, allowing for simultaneous determination of several elements in a variety of samples and matrices. However, because U exhibits a complex emission spectrum, spectral interferences are prone to affect the analysis of Al, calling for time consuming preparation steps to remove the U from the matrix. This study proposes a method of direct determination of Al in UAlx targets through the selection of specific emission lines enabled by the evaluation of the associated interferences on the recovery values.

Downloads

Download data is not yet available.

References

MARQUES, F. L.N.; OKAMOTO, M. R. Y.; BUCHPIGUEL, C. A. Alguns aspectos sobre geradores e radiofármacos de tecnécio-99m e seus controles de qualidade. Radiol Bras, v. 34, p. 233-239, 2001.

DOMINGOS, D. B.; SILVA, A. T.; JOÃO, T. G.; SILVA, J. E. R.; ANGELO, G.; FEDORENKO, G. G.; NISHIYAMA, P. J. B. O. Comparison of Low Enriched Uranium (UAlx-Al and U-Ni) Targets with Different Geometries for the Production Of Molybdenum-99 in the IEA-R1 and RMB Reactors, In: INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE, 2011, Belo Horizonte, Annals... Belo Horizonte: Comissão Nacional de Energia Nuclear, 2011. p. 24-28.

WIENCIEK, G. F.; VANDEGRIFT, A. B.; LEVYA, A. A.; HEBDEN, A. S. Status and Progress of Foil and Target Fabrication Activities for the Production of Mo-99 from LEU, In: 30TH INTERNATIONAL MEETING ON REDUCED ENRICHMENT FOR RESEARCH AND TEST, 2008, Washington, Annals... Washington: IAEA, 2008.

GOLDMAN, I. N.; RAMAMOORTHY, N.; ADELFANG, P. Progress and Status of the IAEA Coordinated Research Project: Production of Mo-99 Using LEU Fission or Neutron Activation, In : 29TH INTERNATIONAL MEETING ON REDUCED ENRICHMENT FOR RESEARCH AND TEST, 2007, Prague, Annals... Prague: U.S. Department of Energy / National Nuclear Security Administration's Office of Global Threat Reduction, 2007.

DONG, D. J.; VANDEGRIFT, G. F. Alkaline peroxide processing of low-enriched uranium targets for 99Mo production -- Decomposition of hydrogen peroxide. Nucl Sci Eng, v.126, p. 213-223, 1997.

IAEA - International Atomic Energy Agency. Good Practices for Qualification of High Density Low Enriched Uranium Research Reactor Fuels, IAEA Nuclear Energy Series No. NF-T-5.2, Vienna: IAEA, 2009. 74p.

NRCC - National Research Council Committee. Medical Isotope Production without Highly Enriched Uranium, Washington, DC: National Academies Press, 2009.

MARAGHEH, M. G.; DAVARPANAH, M. R.; FAZLALI, M.; BOUDANI, M. K.; NOSRATI, S. A. Industrial-Scale Production of 99mTc Generators for Clinical Use Based on Zirconium Molybdate Gel. Nucl Technol, v. 169, p. 279-284, 2010.

GOLDMAN, I.; RAMAMOORTHY, N.; ADELFANG, P. Progress in the IAEA Coordinated Research Project on Molybdenum-99 Production Using LEU or Neutron Activation, In: 27TH INTERNATIONAL MEETING ON REDUCED ENRICHMENT FOR RESEARCH AND TEST, 2005, Boston, Annals... Boston: Argonner National Laboratory, 2005.

LEENAERS, A.; VAN DEN BERGHE, S.; KOONEN, E.; JAROUSSE, C.; HUET, F.; TROTABAS, M.; BOYARD, M.; GUILLOT, S.; SANNEN, L.; VERWERFT, M. Post-Irradiation Examination of Uranium 7 wt% Molybdenum Atomized Dispersion Fuel. J Nucl Mater, v. 335, p. 39-47, 2004.

MANI, R. S.; NARASIMHAN, D. V. S. Development of Kits for Short-Lived Generator-Produced Radioisotopes, In: INTERNATIONAL ATOMIC ENERGY AGENCY, editor. Radiopharmaceuticals and Labelled Compounds. Vienna: IAEA STI/PUB/344, 1973.

PADMANABHAN, S.; RAMAMOORTHY N. Technetium-99m generators: Principles and features, In: RAMAMOORTHY, N.; SHIVARUDRAPPA, V.; BHELOSE, A. A., editors. Radiopharmaceuticals and hospital radiopharmacy practices: course manual for accreditation/certification of hospital radiopharmacists. Mumbai: Department of Atomic Energy, Government of India, 2000.

VANDEGRIFT, G. F.; CONNER, C.; HOFMAN, G. L.; LEONARD, R. A.; MUTALIB, A.; SEDLET, J.; WALKER, D. E.; WIENCEK, T.C.; SNELGROVE, J. L. Modification of Targets and Processes for Conversion of 99Mo Production from High- to Low-Enriched Uranium. Ind Eng Chem Res, v. 39, p. 3140-3145, 2000.

HAYDT, H. M.; CINTRA, S. H. Nota Preliminar sobre a Fabricação de Elementos Combustíveis Planos Contendo Núcleo de Ligas Alumínio-Urânio. Metalurgia, v. 23, n. 121, p. 955-959, 1967.

MALHOTRA, R. K.; SATYANARAYANA, K. Estimation of trace impurities in reactor-grade uranium using ICP-AES. Talanta, v. 50, n. 3, p. 601-608, 1999.

REIS, E. L. T.; SCAPIN, M.; COTRIM, M. B. E.; SALVADOR, V. L.; PIRES, M. A. F. Impurities Determination on Nuclear Fuel Element Components for the IEA-R1 Research Reactor by Analytical Methods based on ED-XRF and ICP-OES, In: INTERNATIONAL NUCLEAR ATLANTIC CONFERENCE, 2009, Rio de Janeiro, Annals... Rio de Janeiro : Comissão Nacional de Energia Nuclear, 2009.

DUNG, N. T. K.; SON, D. T.; VAN TRUNG, H. Application of Atomic Absorption Spectrometry for the Quantitative Determination of Metallic Impurities in Pure Uranium Compounds. Anal Sci, v. 18, n. 11, p. 1263-1266, 2002.

SOUZA, A. L.; LEMOS, S. G.; SHERLAN, G.; OLIVEIRA, P. V. A method for Ca, Fe, Ga, Na, Si and Zn determination in alumina by inductively coupled plasma optical emission spectrometry after aluminum precipitation. Spectrochim Acta, Part B, v. 66, p. 383-388, 2011.

LAJUNEM, L. H. J.; PERÄMÄKI, P. Spectrochemical Analysis by Atomic Absorption and Emission, 2nd ed. Cambridge, UK: Royal Society of Chemistry, 2004.

MERMET, J. M.; POUSSEL, E. ICP Emission Spectrometers: 1995 Analytical Figures of Merit. Appl Spectrosc, v. 49, n. 10, p. A12-A18, 1995.

MERMET, J. M. Use of magnesium as a test element for inductively coupled plasma atomic emission spectrometry diagnosis. Anal Chim Acta, v. 250, p. 85-94, 1991.

Downloads

Published

2021-04-30

Issue

Section

The Meeting on Nuclear Applications (ENAN) 2019

How to Cite

Direct determination of aluminum in low-enriched UAlx targets (UAlx-Al) by Inductively Coupled Plasma Optical Emission Spectrometry. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 9, n. 1A, 2021. DOI: 10.15392/bjrs.v9i1A.1247. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/1247.. Acesso em: 23 nov. 2024.

Similar Articles

71-80 of 109

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)