Facilidades de códigos de Monte Carlo para obter CSR
DOI:
https://doi.org/10.15392/bjrs.v7i3B.891Keywords:
Simulação, Monte Carlo, modelagem, camada semiredutoraAbstract
O uso da técnica de modelagem matemática pelo método de Monte Carlo (MC) utiliza funções probabilísticas e números "aleatórios" para a realização de cálculos que simulam sistemas físicos, como o transporte de partículas radioativas. A determinação das primeiras e segundas camadas semiredutoras para um espectro determinado e uma distância pré-definida testou a verificou as vantagens e desvantagens de cada código na resolução de uma tarefa comum. Os resultados foram coerentes, mas discrepantes entre si entre 2,5 e 6,0 %, concluindo que os quatro códigos são poderosos e de fácil utilização, requerendo pouco conhecimento de linguagem computacional, inicialmente.
Downloads
References
ROGERS DWO. Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol. 2006;51(13):287.
SOKOLOWSKI J, BANKS C. Principles of modeling and simulation: a multidisciplinary approach. Hoboken; 2009.
ARNOLD FJ, PELÁ CA. Simulação computacional de campos ultra-sônicos. Rev Bras Ensino Física. 2004;26(3):223–31.
BIRDSALL CK, LANGDON AB. Plasma physics via computer simulation. New York CRC Press. 2004;504.
RADINSCHI I, ET. AL. Computer simulations of physics phenomena using flash. Int J Hands-on Sci. 2008;1(1):27–32.
SANTOS MH. Desenvolvimento de um simulador para espectrometria por fluorescência de raios X usando computação distribuída. UERJ; 2011.
KAWRAKOW I, ROGERS DWO. The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport. Technical Report PIRS-701. Ottawa,Canadá; 2000.
VILCHES M, GARCÍA-PAREJA S, GUERRERO R, ANGUIANO M, LALLENA AM. Monte Carlo simulation of the electron transport through thin slabs: A comparative study of penelope, geant3, geant4, egsnrc and mcnpx. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 2007;254(2):219–30.
KOIVUNORO H, SIISKONEN T, KOTILUOTO P, AUTERINEN I, HIPPELÄINEN E, SAVOLAINEN S. Accuracy of the electron transport in mcnp5 and its suitability for ionization chamber response simulations: A comparison with the egsnrc and penelope codes. Med Phys. 2012;39(3):1335–44.
ARCHAMBAULT JP, MAINEGRA-HING E. Comparison between EGSnrc, Geant4, MCNP5 and Penelope for mono-energetic electron beams. Phys Med Biol. 2015;60(13):4951–62.
GEANT4. GEANT4: a simulation toolkit. 2017.
REED AL. a Primer; Medical physics calculations with MCNP: 2007.
SALVAT F, FERNÁNDEZ-VAREA J, SEMPAU J. PENELOPE-2008: A Code System for Monte Carlo Simulation of Electron and Photon Transport. Workshop Proceedings. 2008.
MAINEGRA-HING E, KAWRAKOW I. Variance reduction techniques for fast Monte Carlo CBCT scatter correction calculations. Phys Med Biol. 2010;55:4495–4507.
ALLISON J, AL E. Recent developments in GEANT4. Nucl Instruments
Methods Phys Res A. 2016;835:186–225.
BERNAL MA, AL. E. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys Medica. 2015;31:861–874.
KYRIAKOU I, INCERTI S, FRANCIS Z. Technical Note: Improvements in GEANT4 energy‐loss model and the effect on low‐energy electron transport in liquid water. Med Phys. 2016;42(7):3870–3876.
MARTINS MC. Simulações por Monte Carlo de tratamentos de braquiterapia utilizando simuladores antropomórficos em voxel. UFRJ; 2014.
OKADA S, AL. E. GPU Acceleration of Monte Carlo Simulation at the Cellular and DNA Levels. In: CHEN, Y. W.; TORRO, C.; TANAKA, S.; HOWLETT, R.; C. JAIN, L. Innov Med Healthc Smart Innov Syst Technol. 2016;45.
PANDOLA L, ANDENNA C, CACCIA B. Validation of the GEANT4 simulation of bremsstrahlung from thick targets below 3 MeV. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 2015;350:41–8.
WRIGHT DH, KELSEY MH. The Geant4 Bertini Cascade. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2015;804:175–88.
DAVID MG, PIRES EJ, BERNAL M A., PEIXOTO JG, DEALMEIDA CE. Experimental and Monte Carlo simulated spectra of standard mammography-quality beams. Br J Radiol. 2012;85(1013):629–35.
POZUELO F, GALLARDO S, QUEROL A, VERDU G, RODENAS J. X-ray simulation with the Monte Carlo code PENELOPE. Application to Quality Control. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:5777–80.
AGUIRRE E, DAVID M, DEALMEIDA CE, BERNAL MA. Impact of photon cross section uncertainties on Monte Carlo-determined depth-dose distributions. Phys Medica. 2016;32(9):1065–71.
BIRCH R, MARCHALL M, ARDRAN GM, ANDRAN GM. Catalogue of spectral data for diagnostic X-rays. London; 1979.
Published
Issue
Section
License
Copyright (c) 2019 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/