Use of voxelized thyroid models to develop a physical-anthropomorphic phantom for 3D printing
DOI:
https://doi.org/10.15392/bjrs.v9i2C.1673Keywords:
Simulador Tireoide-pescoço, Modelo Voxelizados, 131I, Impressão 3D.Abstract
The monitoring of the intake os radionuclides by workers and public individuals, using in vivo measurements, requires the application of calibration factors obtained with physical-anthropomorphic phantoms. In the case of 131I, the lack of anatomical realism of the phantom might impair the quality and reliability of the monitoring result. Thus, in order to develop a thyroid phantom by means of 3D printing, images of the voxelized models provided in ICRP 110 were used. The superposition of the images of the original model and the treated model demonstrate the maintenance of morphological characteristics. Therefore, image manipulation techniques applied in this work aimed to smooth the sharp angles of the original image and the prototype printing were considered effective.
Downloads
References
INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA) (2014). Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. General Safety Requirements Part 3No. GSR Part 3.
INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA). (1999) Assessment of Occupational Exposure Due to Intakes of Radionuclides - Safety Standards Series, no.RS-G-1.2, IAEA.
MILLER, K.L.; BOTT, S.M.; VELKLEY, D. E.(1979) “Review of contamination and exposure hazards associated with therapeutic uses of radioiodine”. J. Nucl. Med. Technology, v.7, p. 163-166.
OLIVEIRA, R. S., LEÃO, A. M. A. C. (2008) “História da Radiofarmácia e as implicações da Emenda Constitucional N. 49”. Revista Brasileira de Ciências Farmacêuticas, v. 44, n. 3, p. 377-382.
ICRP, 1993, Age-dependent Doses to Members of the Public from Intake of Radionuclides -Part 2 Ingestion Dose Coefficients. ICRP Publication 67. Ann. ICRP 23 (3-4).
ICRP, 1997. Individual Monitoring for Internal Exposure of Workers (preface and glossary missing). ICRP Publication 78. Ann. ICRP 27 (3-4).
INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA). (1996). Direct methods for measuring radionuclides in the human body. Safety Series n. 114.
ZHANG, B.; MILLE, M.; XU, X. G.(2008)"An analysis of dependency of counting efficiency on worker anatomy for in vivo measurements: whole-body counting". Phys. Med. Biol. 53 3463–75.
DANTAS, B. M. (1998) “Bases para a calibração de contadores de corpo inteiro utilizando simuladores físicos antropomórficos”. Tese de doutorado. Universidade do Estado do Rio de Janeiro.
BROGGIO, D.; ZHANG, B.; DE CARLAN, L.; DESBRÉE, A.; LAMART, S.; LE GUEN, B.; BAILLOEUIL, C.; FRANCK, D. (2009) "Analytical and Monte Carlo assessment of activity and local dose after a wound contamination by activation products". Health Phys. 96 155–63.
LAMART, S.; BLANCHARDON, E.; MOLOKANOV, A.; KRAMER, G. H.; BROGGIO, D.; FRANCK, D. (2009) "Study of the influence of radionuclide biokinetics on the efficiency of in vivo counting using Monte Carlo simulation". Health Phys. 96 558–67.
ZOU, W. et al (2015)"Potential of 3D printing technologies for fabrication of electron bolus and proton compensators". J. Appl. Clin. Med. Phys. 16 90–8.
RUITERS, S.; SUN, Y.; DE JONG, S.; POLITIS, C.; MOMBAERTS, I. (2016) "Computer-aided design and three-dimensional printing in the manufacturing of an ocular prosthesis" Br. J. Ophthalmol. 100 879–81.
ZUNIGA, J. M.; PECK, J.; SRIVASTAVA, R.; KATSAVELIS, D.; CARSON, A. (2016)"An open source 3D-printed transitional hand prosthesis for children". J. Prosthet. Orthot. At press (https://doi.org/10.1097/ JPO.0000000000000097).
TAN, E. T. W.; LING, J. M. AND DINESH, S. K. (2016) "The feasibility of producing patient-specific acrylic cranioplasty implants with a low-cost 3D printer". J. Neurosurg. 124 1531–7.
BEAUMONT, T.; IDEIAS, P. C.; RIMLINGER, M.; BROGGIO, D.; FRANCK, D. (2017) "Development and test of sets of 3D printed age-specific thyroid phantoms for 131I measurements". Phys. Med. Biol. 62 4673.
LUCENA, E. A.; REBELO, A. M. O.; ARAÚJO, F.; SOUSA, W. O.; DANTAS, A. L. A.; DANTAS, B. M.; CORBO, R. (2007)Evaluation of internal exposure of nuclear medicine staff through in vivo and in vitro bioassay techniques. Radiation Protection Dosimetry, v.127, p.465 468.
OLIVEIRA, S. M.; DANTAS, A. L. A.; DANTAS, B. M. (2016) Comparison of surface contamination monitors for in vivo measurement of 131I in the thyroid. Journal of Physics: Conference Series, Volume 733, Number 1.
ICRP, 2002, Basic Anatomical and Physiological Data for Use in Radiological Protection Reference Values. ICRP Publication 89. Ann. ICRP 32 (3-4).
ICRP Publication 110. Adult Reference Computational Phantoms. Ann ICRP, v. 39(2), p. 1-166, 2009.
RASBAND, W.S., (2016) ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. Disponível em: http://imagej.nih.gov/ij/. Acessado em Setembro (2016).
JUNQUEIRA, L. C.; CARNEIRO J. Histologia Básica: 10. ed. São Paulo: Guanabara Koogan, 2004.
MACIEL, L. M.Z. (2007) O exame físico da tireoide. Medicina (Ribeirão Preto); 40 (1): 72-77.
Published
Issue
Section
License
Copyright (c) 2021 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/