Material imaging study of 3D printing materials for diagnostic radiology phantom development
DOI:
https://doi.org/10.15392/2319-0612.2024.2556Keywords:
3D printing, Fused Filament Fabrication, phantom, Signal-to-Noise Ratio, Contrast-to-Noise RatioAbstract
The 3D printing techniques have found applications across diverse fields, significantly enhancing design and manufacturing processes. The impact of this growth is particularly notable in radiology, where 3D printing has been applied to developing quality control tools and advancing dosimetry techniques. 3D printing has the advantage of having a wide variety of plastic materials which can be used in the manufacturing process; there is a scarcity of work developed to evaluate the attenuation of the x-ray beam of the materials used in printing 3D models for phantom development. This paper aims to show our results on the imaging characteristics investigation of 15 3D printable materials. 3D objects were printed as cubes of 20 x 20 x 20 mm3 with a 100% infill and 45°/45° rectilinear structural pattern, and images acquired in a DR X-ray unit were analyzed with ImageJ software. Imaging pixel values, Signal-to-Noise Ratio – SNR and Contrast-to-Noise Ratio – CNR were evaluated and compared between the 3D-printed cubes and a standard chest phantom. When comparing the SNR for plastic materials and chest structures, significant differences were found. Similar results were found for the CNR. The differences were noted for both plastic materials, Tungsten and Bismuth, that demonstrated statistically significant values of SNR compared to the lung (p < 0.0001) and right rib (p < 0.0001). Tungsten and Bismuth filaments were found to have the potential to represent the SNR for intermediary and high-density structures. Scapula was the only anatomical structure with no statistically significant difference of the CNR for SILK (p ≥ 0.074), ABS (p ≥ 0.086), PVA (p ≥ 0.917) and ABSpremium (p ≥ 0.955). The study of potential radiological 3D printing materials for diagnostic radiology phantom development revealed important imaging characteristics for the plastic materials using the Fused Filament Fabrication technique.
Downloads
References
CRAMER, J.; QUIGLEY, E.; HUTCHINS, T.; , SHAH, L. Educational Material for 3D Visualization of Spine Procedures: Methods for Creation and Dissemination J. Digit. Imaging, v.30, n.3,p.296-300, 2017.
KAMOMAE. T.;, SHIMIZU, H.; NAKAYA, T.; OKUDAIRA,K.;AOYAMA, T.; OGUCHI, H.; KOMORI, M.; KAWAMURA, M.; OHTAKARA,K.; MONZEN, H.; ITOH, Y.; NAGANAWA,S.; Three-dimensional printer-generated patient-specific phantom for artificial in vivo dosimetry in radiotherapy quality assurance Phys. Medica, v. 44 , p. 205-211, 2017
SCULPTEO. The State of 3D Printing Report 2018 Disponível em: https://www.sculpteo.com/en/ebooks/state-of-3d-printing-report-2018/. Acesso em: 27 ago. 2024
SHIN, J.; SANDHU, R.. S.; SHIH, G.; Imaging Properties of 3D Printed Materials: Multi-Energy CT of Filament Polymers J. Digit. Imaging, v.30,n.5, p.572–5, 2017
YANG, L.; GROTTKAU, B.; HE, Z.; YE, C. Three dimensional printing technology and materials for treatment of elbow fractures Int. Orthop., v.41,p. 2381–2387, 2017.
FAROOQI, K. M.; SAEED, O.; ZAIDI, A.; SANZ, J.; NIELSEN, J. C.; HSU, D. T.; JORDE, U. P. 3D Printing to Guide Ventricular Assist Device Placement in Adults With Congenital Heart Disease and Heart Failure. JACC Hear. v.4,n.4, p.301-11, 2016
SAVI, M.; ANDRADE, M. A. B.; POTIENS, M. P. A. Commercial filament testing for use in 3D printed phantoms, Radiat. Phys. Chem., v. 174, p, 108906, 2020
SAVI, M.; ANDRADE, M. A. B.; VILLANI, D., JUNIOR, O. R.; POTIENS, M. D.A. P. A. Development of radiopaque FFF filaments for bone and teeth representation in 3D printed radiological objects, Brazilian J. Radiat. Sci. v.10,n.1,p.01-22,2022.
KAPETANAKIS, I.; FOUNTOS, G.; MICHAIL, C.; VALAIS, I.; KALYVAS, N.; 3D printing X-Ray Quality Control Phantoms. A Low Contrast Paradigm, Journal of Physics: Conference Series,v.931,p. 012026,2017
OLIVEIRA, M.; BARROS, J.C.; UBEDA, C. Development of a 3D printed quality control tool for evaluation of x-ray beam alignment and collimation, Phys. Medica, v. 65, p.29-32, 2019.
PAXTON. N.; SMOLAN, W.; BÖCK, T.; MELCHELS, F.; GROLL, J.; JUNGST, T.; Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability Biofabrication v.9,n.4,p.044107, 2017
OGDEN,K. M.; MORABITO, K. E.; DEPEW, P. K.; 3D printed testing aids for radiographic quality control J. Appl. Clin. Med. Phys. v.20,n.5,p. 127–34,2019
NOONOO. J, B.; SOSU, E.; HASFORD, F.; Three-dimensional image quality test phantom for planar X-ray imaging. S. Afr. J. Sci.v.119,n.7/8, p.1-7,2023
MADAMESILA, J.; MCGEACHY, P.; VILLARREAL, B.J. E.; KHAN, R. Characterizing 3D printing in the fabrication of variable density phantoms for quality assurance of radiotherapy, Phys. Medica, v.32,n1,p.242-247, 2016
GROENEWALD, A.; GROENEWALD, W. A. Development of a universal medical X-ray imaging phantom prototype J. Appl. Clin. Med. Phys. v.17,n.6,p356-365,2016.
SCHOPPHOVEN, S.; CAVAEL, P.; BOCK, K.; FIEBICH, M.; MÄDER, U. Breast phantoms for 2D digital mammography with realistic anatomical structures and attenuation characteristics based on clinical images using 3D printing Phys. Med. Biol.v. 64,n.21,p.215005,2019
HE, Y.; LIU, Y.; DYER, B. A.; BOONE, J. M.; LIU, S.; CHEN, T.; ZHENG, F.; ZHU, Y.; SUN, Y.; RONG, Y.; QIU, J.;3D-printed breast phantom for multi-purpose and multi-modality imaging Quant. Imaging Med. Surg. v.9,n.1,p.63-74 ,634–74,2019.
OLIVEIRA, M.; SAVI, M.; ANDRADE, M.; VILLANI, D.; POTIENS, M. P. A.; STUANI, H; UBEDA, C.; MDLETSHE, S.; Attenuation properties of common 3D printed FFF plastics for mammographic applications Brazilian J. Radiat. Sci.,v. 10.n.1,p.01-17,2022
LEE, M. Y.; HAN, B.; JENKINS, C.; XING, L.; SUH, T. S.; A depth-sensing technique on 3D-printed compensator for total body irradiation patient measurement and treatment planning Med. Phys. v.43,n.11,p.6137,2016
JAVAN, R.; BANSAL, M.; TANGESTANIPOOR, A. A prototype hybrid gypsum-based 3-dimensional printed training model for computed tomography-guided spinal pain management J. Comput. Assist. Tomogr.v.40,n.4,p.626-631,2016
KIM, M. J.; LEE, S. R.; LEE, M. Y.; SOHN, J. W.; YUN, H. G.; CHOI, J. Y.; JEON, S. W.; SUH, T. S. Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy PLoS One, v.12,n.5,p.e0176227,2017
SILBERSTEIN, J. ; SUN, Z. Advances and Applications of Three-Dimensional-Printed Patient-Specific Chest Phantoms in Radiology: A Systematic Review Appl. Sci. v.. 14, p. 5467 14 5467, 2024
Rasband W. ImageJ. Bethesda, Maryland, USA: U.S. National Institutes of Health; 1997e2012. Disponivél em:: http://imagej.nih.gov/ij/.
HUDA, W.; ABRAHAMS, R. B. Radiographic techniques, contrast, and noise in x-ray imaging. Am. J. Roentgenol. v.204,n.2,p. W126–31,2015
BRODER, J. Imaging the Chest: The Chest Radiograph. In Diagnostic Imaging for the Emergency Physician, Expert Consult - Online and Print, p.185–296, 2011.
DUKOV, N.; BLIZNAKOVA, K.; OKKALIDIS, N.; TENEVA, T.; ENCHEVA, E.; BLIZNAKOV, Z.; Thermoplastic 3D printing technology using a single filament for producing realistic patient-derived breast models, Phys. Med. Biol. v.67,n.4,p.045008,2022
GEAR, J. I.; LONG, C.; RUSHFORTH, D.; CHITTENDEN, S. J.; CUMMINGS, C.; FLUX, G. D. Development of patient-specific molecular imaging phantoms using a 3D printer Med. Phys. v. 41,n.8,p.082502,2014.
ZHANG, F.; ZHANG, H.; ZHAO, H.; HE, Z.; SHI, .; HE, Y.; JU, N.;RONG, Y.; QIU, J. Design and fabrication of a personalized anthropomorphic phantom using 3D printing and tissue equivalent materials, Quant. Imaging Med. Surg. v.9,n.1,p.94-100,2019
ANWARI, V.; LAI, A.; URSANI, A.; REGO, K.; KARASFI, B.; SAJJA, S.; PAUL, N. 3D printed CT-based abdominal structure mannequin for enabling research. 3D Print. Med.v.6,n.1,p.1-12 ,2020
PULLEN, M. W.; POOLEY, R. A.; KOFLER, J. M.;VALERO-MORENO, F.; RAMOS-FRESNEDO, A.; DOMINGO, R. A.; PEREZ-VEGA, C.; FOX, W. C.; SANDHU, S. J. S. QUINONES-HINOJOSA, A.; BUCHANAN, I. A. A radiographic analysis of common 3D print materials and assessment of their fidelity within vertebral models Ann. 3D Print. Med.v.8,p.1-7,2022
HUDA, W.; BRAD, A.R. X-ray-based medical imaging and resolution Am. J. Roentgenol. v.204,n.4,p. W393–397,2015
ZHAO, Y.; MORAN, K.; YEWONDWOSSEN, M.; ALLAN, J. CLARKE, S.; RAJARAMAN, M.; WILKE, D.; JOSEPH, P.; ROBAR, J. L. Clinical applications of 3-dimensional printing in radiation therapy Med. Dosim. v.42,n.2,p. 150–155,2017
CEH, J.; YOUD, T.; MASTROVICH, Z.; PETERSON, C.; KHAN, S.; SASSER, T. A.; SANDER, I. M.; DONEY, J.; TURNER, C.; LEEVY, W. M. Bismuth Infusion of ABS Enables Additive Manufacturing of Complex Radiological Phantoms and Shielding Equipment. Sensors (Basel).v. 17,n.3,p.459,2017
JUNG, J.; SONG, S. Y.; YOON, S. M.; KWAK, J.; YOON, K.; CHOI, W.; JEONG, S. Y.; CHOI, E. K.; CHO, B. Verification of accuracy of CyberKnife tumor-tracking radiation therapy using patient-specific lung phantoms Int. J. Radiat. Oncol. Biol. Phys.v. 92,n.4,p.745-753,2015
PALLOTTA, S.; CALUSI, S.; FOGGI, L.; LISCI, R.; MASI, L.; MARRAZZO, L. TALAMONTI, C.; LIVI, L.; SIMONTACCHI, G.ADAM: A breathing phantom for lung SBRT quality assurance Phys. Medica,v.49,p.147-155,2018
LARSSON, J.; LIAO, P.; LUNDIN, P.; KRITE, S.E., SWARTLING, J.; LEWANDER, X. M.; BOOD, J.; ANDERSSON-ENGELS, S. Development of a 3-dimensional tissue lung phantom of a preterm infant for optical measurements of oxygen—Laser-detector position considerations, J. Biophotonics,v.11,n.3,p.1-8,2017
HAZELAAR, C.; VAN EIJNATTEN. M.; DAHELE, M.; WOLFF, J.; FOROUZANFAR, T.; SLOTMAN, B.; VERBAKEL, W. F. A. R. Using 3D printing techniques to create an anthropomorphic thorax phantom for medical imaging purposes Med. Phys. v.45,n.1,p.92-100,2018.
KAIRN, T.; CROWE, S. B.; MARKWELL, T. Use of 3D printed materials as tissue-equivalent phantoms In: Jaffray, D. (eds) World Congress on Medical Physics and Biomedical Engineering, Toronto, Canada. IFMBE Proceedings,v.51,p.728-729,2015
Published
Issue
Section
License
Copyright (c) 2024 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/