Application of the piecewise constant function approximation method to modified point kinetics

Authors

  • Bruno Nascimento Martins Eletronuclear https://orcid.org/0009-0008-0707-7648
  • Alessandro da Cruz Gonçalves Universidade Federal do Rio de Janeiro, PEN/COPPE
  • Zelmo Rodrigues de Lima Instituto de Engenharia Nuclear

DOI:

https://doi.org/10.15392/2319-0612.2024.2588

Keywords:

reactivity, point kinetics, PCA, relaxation time

Abstract

This work uses the numerical method known as Piecewise Constant Approximation, PCA, to solve the equations of modified point kinetics for six groups of delayed neutron precursors. The modified point kinetics corresponds to the point kinetics model without considering the approximation for the derivative of the logarithm of the neutron current. Applying the PCA method approximates the reactivity function to continuous piecewise functions, and the resulting system of first-order differential equations can be solved exactly in each time partition. For validation, numerical simulations are carried out for the cases of constant reactivity, step type and time-varying reactivity, ramp type, and the results are compared with those obtained by the finite difference method. Quantitative analysis of the results shows that the PCA method can efficiently obtain good results for modified point kinetics. 

Downloads

Download data is not yet available.

References

DUDERSTADT, J. J.; HAMILTON, L. J. Nuclear Reactor Analysis. New York, US: John Wiley & Sons, 1976.

BROWN, H.D. A general treatment of flux transients. Nuclear Science and Engineering, 2, p. 687-693, 1957. DOI: https://doi.org/10.13182/NSE57-A25436

AKCASU, Z. General solution of the reactor kinetic equations without feedback. Nuclear Science and Engineering, 3, p. 456-467, 1958. DOI: https://doi.org/10.13182/NSE58-A25482

HANSEN, K.F., Koen, B.V., Little, W.W. Stable numerical solutions of the reactor kinetics equations. Nuclear Science and Engineering, 22, p. 51-59, 1965. DOI: https://doi.org/10.13182/NSE65-A19762

HAYASAKa, H., Takeda, S. Study of neutron wave propagation. Journal of Nuclear Science and Technology, 5, p. 564-571, 1968. DOI: https://doi.org/10.1080/18811248.1968.9732515

GOLDSTEIN, R., SHOTKIN, L.M. Use of the prompt-jump approximation in fast reactor kinetics. Nuclear Science and Engineering, 38, p. 94-103, 1969. DOI: https://doi.org/10.13182/NSE69-A19513

DA Nobrega, J.A.W. A new solution of the point kinetics equations. Nuclear Science and Engineering, 46, p. 366-375, 1971. DOI: https://doi.org/10.13182/NSE71-A22373

HETRICK, D.L. Dynamics of Nuclear Reactors. Chicago, US: The University of Chicago Press, 1971.

KANG, C.M., HANSEN, K.F. Finite element methods for reactor analysis. Nuclear Science and Engineering, 51, p. 456-495, 1973. DOI: https://doi.org/10.13182/NSE73-A23278

HENNART, J.P. Piecewise polynomial approximations for nuclear reactor point and space kinetics. Nuclear Science and Engineering, 64, p. 875-901, 1977. DOI: https://doi.org/10.13182/NSE77-A14503

CHAO, Y.A., ATTARD, A. A resolution of the stiffness problem of reactor kinetics. Nuclear Science and Engineering, 90, p. 40-46, 1985. DOI: https://doi.org/10.13182/NSE85-7

GUPTA, H.P., TRASI, M.S. Asymptotically stable solutions of point-reactor kinetics equations in the presence of Newtonian temperature feedback. Annals of Nuclear Energy, 4, p. 203-207, 1986. DOI: https://doi.org/10.1016/0306-4549(86)90027-7

SANCHEZ, J. On the numerical solution of the point reactor kinetics equations by generalized Runge-Kutta methods. Nuclear Science and Engineering, 103, p. 94–99, 1989. DOI: https://doi.org/10.13182/NSE89-A23663

BEHRINGER, K., PIÑEYRO, J., MENNIG, J. Application of the Wiener-Hermite functional method to point reactor kinetics driven by random reactivity fluctuations. Annals of Nuclear Energy, 17, 643-656, 1990. DOI: https://doi.org/10.1016/0306-4549(90)90025-9

BUZANO, M.L., CORNO, S.E., CRAVERO, I. A new procedure for integrating the point kinetic equations for fission reactors. Computers & Mathematics with Applications, 29, p. 5–19, 1995. DOI: https://doi.org/10.1016/0898-1221(94)00245-G

BASKEN, J., LEWINS, J. Power series of the reactor kinetics equations. Nuclear Science and Engineering, 122, p. 407-416, 1996. DOI: https://doi.org/10.13182/NSE96-A24175

KOCLAS, J., SISSAOUI, M.T., HEBERT, A. Solution of the improved and generalized quasistatic methods using an analytic calculation or a semi-implicit scheme to compute the precursor equations. Annals of Nuclear Energy, 23 (14), p. 1127-1142, 1996. DOI: https://doi.org/10.1016/0306-4549(95)00075-5

HASHIMOTO, K., IKEDA, H., TAKEDA, T. Numerical instability of time-discretized one-point kinetic equations. Annals of Nuclear Energy, 27, p. 791-803, 2000. DOI: https://doi.org/10.1016/S0306-4549(99)00092-4

ABOANBER, A.E., HAMADA, Y.M. PWS: an efficient code system for solving space-independent nuclear reactor dynamics. Annals of Nuclear Energy, 29, p. 2159-2172, 2002. DOI: https://doi.org/10.1016/S0306-4549(02)00034-8

KINARD, M., ALLEN, K.E.J. Efficient numerical solution of the point kinetics equations in nuclear reactor dynamics. Annals of Nuclear Energy, 31, p. 1039-1051, 2004. DOI: https://doi.org/10.1016/j.anucene.2003.12.008

HAYES, J.G., ALLEN, E.J. Stochastic point-kinetics equations in nuclear reactor dynamics. Annals of Nuclear Energy, 32, p. 572-587, 2005. DOI: https://doi.org/10.1016/j.anucene.2004.11.009

DULLA, S., NICOLINO, C., RAVETTO, P. Reactivity oscillation in source driven systems. Nuclear Engineering and Technology, 38, p. 657-664, 2006.

CHEN, W.Z., GUO, L.F., ZHU, B., LI, H. Accuracy of analytical methods for obtaining supercritical transients with temperature feedback. Progress in Nuclear Energy, 49, p. 290-302, 2007. DOI: https://doi.org/10.1016/j.pnucene.2007.01.004

NAHLA, A.A. Analytical solution to solve the point reactor kinetics equations. Nuclear Engineering and Design, 240, p. 1622-1629, 2010. DOI: https://doi.org/10.1016/j.nucengdes.2010.03.003

ESPINOSA-PAREDES, G., POLO-LABARRIOS, M., ESPINOSA-MARTINEZ, E., VALLE-GALLEGOS, E. Fractional neutron point kinetics equations for nuclear reactor dynamics. Annals of Nuclear Energy, 38, p. 307-330, 2011. DOI: https://doi.org/10.1016/j.anucene.2010.10.012

NUNES, A. L. A Influência da Aproximação Referente à Derivada da Corrente de Nêutrons nas Equações da Cinética Pontual. Tese de D.Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brazil, 2015.

ALTAHHAN, M.R., NAGY, M.S., ABOU-GABAL, H.H., ABOANBER, A.A. Formulation of a point kinetics model based on the neutron telegraph equation. Annals of Nuclear Energy, 91, p. 176–188, 2016. DOI: https://doi.org/10.1016/j.anucene.2016.01.011

ESPINOSA-PAREDES, G. Fractional-space neutron point kinetics (F-SNPK) equations for nuclear reactor dynamics. Annals of Nuclear Energy, 107, p. 136-143, 2017. DOI: https://doi.org/10.1016/j.anucene.2016.08.007

HAMADA, Y.M. Modified fractional neutron point kinetics equations for finite and infinite medium of bar reactor core. Annals of Nuclear Energy, 106, p. 118-126, 2017. DOI: https://doi.org/10.1016/j.anucene.2017.03.048

DINIZ, R.C., GONÇALVES, A.C., DA ROSA, F.S.S. Adjusted mean generation time parameter in the neutron point kinetics equations. Annals of Nuclear Energy, 133, p. 338-346, 2019. DOI: https://doi.org/10.1016/j.anucene.2019.05.019

Downloads

Published

2024-12-20

Issue

Section

Articles

How to Cite

Application of the piecewise constant function approximation method to modified point kinetics. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4, p. e2588, 2024. DOI: 10.15392/2319-0612.2024.2588. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2588. Acesso em: 23 dec. 2024.

Similar Articles

101-110 of 292

You may also start an advanced similarity search for this article.