Luminescência opticamente estimulada em pastilhas de quartzo utilizando iluminação azul e verde

Authors

  • Neilo Marcos Trindade Instituto de Física - Universidade de São Paulo
  • Isabela Alves Ferreira Instituto Federal de São Paulo
  • Matheus Cavalcanti dos Santos Nunes Universidade Estadual Paulista
  • Elisabeth Mateus Yoshimura Instituto de Física - Universidade de São Paulo
  • Makaiko Chithambo Rhodes University

DOI:

https://doi.org/10.15392/2319-0612.2024.2568

Keywords:

rose quartz , blue-OSL, green-OSL, dosimetry

Abstract

In this study, pellets fabricated from powdered rose quartz are investigated for their potential as ionizing radiation detectors, taking advantage of the abundant availability of quartz in the Earth's crust. For this purpose, optically stimulated luminescence (OSL) technique, using blue and green light stimulation, was used. The pellets were irradiated with a 90Sr/90Y beta source to doses from 80 to 550 mGy (dose rate = 0.08Gy/s). Analysis of the OSL decay curves showed a good fit with 3 exponential components (fast, medium, and slow). A linear dose-response relationship was observed within this interval of dose for both light stimulations. The repeatability of the OSL signal was found to be 3% for blue light and 2% for green light. Additionally, the fading experiment indicated that, after 1 hour, 41% and 35% of the OSL signal remains for blue and green stimulation, respectively. The results obtained highlight the promising usefulness of rose quartz-based pellets as effective detectors of ionizing radiation.

Downloads

Download data is not yet available.

Author Biography

  • Neilo Marcos Trindade, Instituto de Física - Universidade de São Paulo

References

J. Götze, M. Plötze, T. Trautmann, Structure and luminescence characteristics of quartz from pegmatites, Am. Mineral. 90 (2005) 13–21. https://doi.org/10.2138/AM.2005.1582. DOI: https://doi.org/10.2138/am.2005.1582

J. Götze, M. Plötze, T. Graupner, D.K. Hallbauer, C.J. Bray, Trace element incorporation into quartz: A combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography, Geochim. Cosmochim. Acta. 68 (2004) 3741–3759. https://doi.org/10.1016/J.GCA.2004.01.003. DOI: https://doi.org/10.1016/j.gca.2004.01.003

O.M. Williams, N.A. Spooner, Defect pair mechanism for quartz intermediate temperature thermoluminescence bands, Radiat. Meas. 108 (2018) 41–44. https://doi.org/10.1016/J.RADMEAS.2017.11.005. DOI: https://doi.org/10.1016/j.radmeas.2017.11.005

R. Kibar, J. Garcia-Guinea, A. Çetin, S. Selvi, T. Karal, N. Can, Luminescent, optical and color properties of natural rose quartz., Radiat. Meas. 42 (2007) 1610–1617. https://doi.org/10.1016/J.RADMEAS.2007.08.007. DOI: https://doi.org/10.1016/j.radmeas.2007.08.007

G.A. Rocha, Quartzo - Cristal, in: Sumário Minearal, Vol 35, DEPARTAMENTO NACIONAL DE PRODUÇÃO MINERAL, Brasília, 2015: pp. 98–99.

S.K. Sharma, S. Chawla, M.D. Sastry, M. Gaonkar, S. Mane, V. Balaram, A.K. Singhvi, Understanding the reasons for variations in luminescence sensitivity of natural quartz using spectroscopic and chemical studies, Proc. Indian Natl. Sci. Acad. 83 (2017) 645–653. https://doi.org/10.16943/ptinsa/2017/49024. DOI: https://doi.org/10.16943/ptinsa/2017/49024

E.G. Yukihara, S.W.S. McKeever, Optically Stimulated Luminescence, UK: John Wiley and sons, West Sussex, 2011. https://doi.org/10.1007/978-3-030-58292-0_150174. DOI: https://doi.org/10.1002/9780470977064

S.W.S. Mckeever, R. Chen, Luminescence models, Radiat. Meas. 27 (1997) 625–661. https://doi.org/10.1016/S1350-4487(97)00203-5. DOI: https://doi.org/10.1016/S1350-4487(97)00203-5

J. Götze, Y. Pan, A. Müller, Mineralogy and mineral chemistry of quartz: A review, Mineral. Mag. 85 (2021) 639–664. https://doi.org/10.1180/MGM.2021.72. DOI: https://doi.org/10.1180/mgm.2021.72

C.. Sunta, Unraveling Thermoluminescence , Springer Verlag, 2015. https://doi.org/10.1007/978-81-322-1940-8/COVER. DOI: https://doi.org/10.1007/978-81-322-1940-8

F. Preusser, M.L. Chithambo, T. Götte, M. Martini, K. Ramseyer, E.J. Sendezera, G.J. Susino, A.G. Wintle, Quartz as a natural luminescence dosimeter, Earth-Science Rev. 97 (2009) 184–214. https://doi.org/10.1016/j.earscirev.2009.09.006. DOI: https://doi.org/10.1016/j.earscirev.2009.09.006

T.D. Mineli, Variabilidade das propriedades de luminescência do quartzo e aplicação de curva dose-resposta padrão para datação de sedimentos brasileiros, (2022). https://doi.org/10.11606/T.44.2021.TDE-11052022-113041. DOI: https://doi.org/10.11606/T.44.2021.tde-11052022-113041

S.W.S. McKeever, Thermoluminescence of Solids, Cambridge University Press, Cambridge, 1985. https://doi.org/10.1017/cbo9780511564994. DOI: https://doi.org/10.1017/CBO9780511564994

A.J. Lontsi Sob, Dynamics of charge movement in α-Al2O3:C,Mg using thermoluminescence phototransferred and optically stimulated luminescence, Rhodes University; Faculty of Science, Physics and Electronics, 2021. https://doi.org/10.21504/10962/294607. DOI: https://doi.org/10.21504/10962/294607

S.W.S. McKeever, A Course in Luminescence Measurements and Analyses for Radiation Dosimetry, 2022.

L. Boetter-Jensen, S.W.S. McKeever, A.G. Wintle, Optically stimulated luminescence dosimetry, 2003. DOI: https://doi.org/10.1016/B978-044450684-9/50091-X

A. Murray, L.J. Arnold, J.P. Buylaert, G. Guérin, J. Qin, A.K. Singhvi, R. Smedley, K.J. Thomsen, Optically stimulated luminescence dating using quartz, Nat. Rev. Methods Prim. 2021 11. 1 (2021) 1–31. https://doi.org/10.1038/s43586-021-00068-5. DOI: https://doi.org/10.1038/s43586-021-00068-5

D. Reimitz, I. Hupka, D. Ekendahl, OSL sensitivity of quartz extracted from fired bricks for retrospective dosimetry, Radiat. Prot. Dosimetry. 198 (2022) 641–645. https://doi.org/10.1093/RPD/NCAC111. DOI: https://doi.org/10.1093/rpd/ncac111

N.A. Silva, S.H. Tatumi, A. de F. Soares, R.F. Barbosa, Characterization of amethyst applied to TL and OSL dosimetry, Brazilian J. Radiat. Sci. 9 (2021). https://doi.org/10.15392/BJRS.V9I1A.1394. DOI: https://doi.org/10.15392/bjrs.v9i1A.1394

C.A. Márquez-Mata, H.R. Vega-Carrillo, M.J. Mata-Chávez, M.G. Garcia-Reyna, J. Vazquez-Bañuelos, G.E. Campillo-Rivera, Á. García-Duran, C.O. Torres-Cortes, I. Rosales-Candelas, J.J. Soto-Bernal, Thermoluminescent characteristics of seven varieties of quartz, Mater. Chem. Phys. 295 (2023) 126999. https://doi.org/10.1016/J.MATCHEMPHYS.2022.126999. DOI: https://doi.org/10.1016/j.matchemphys.2022.126999

R.T.E.K. Martins, I.A. Ferreira, A.O. Silva, M.C.S. Nunes, C. Ulsen, R. Künzel, M.M. Souza, M.L. Chithambo, E.M. Yoshimura, N.M. Trindade, Thermoluminescence of rose quartz from Minas Gerais, Brazil, Radiat. Phys. Chem. 209 (2023) 110960. https://doi.org/10.1016/J.RADPHYSCHEM.2023.110960. DOI: https://doi.org/10.1016/j.radphyschem.2023.110960

I.A. Ferreira, M.C.S. Nunes, E.M. Yoshimura, N.M. Trindade, M.L. Chithambo, A first look at phototransferred thermoluminescence of rose quartz, Radiat. Meas. 174 (2024) 107138. https://doi.org/10.1016/j.radmeas.2024.107138. DOI: https://doi.org/10.1016/j.radmeas.2024.107138

R.M. Bailey, B.W. Smith, E.J. Rhodes, Partial bleaching and the decay form characteristics of quartz OSL, Radiat. Meas. 27 (1997) 123–136. https://doi.org/10.1016/S1350-4487(96)00157-6. DOI: https://doi.org/10.1016/S1350-4487(96)00157-6

A.J.J. Bos, J. Wallinga, How to visualize quartz OSL signal components, Radiat. Meas. 47 (2012) 752–758. https://doi.org/10.1016/J.RADMEAS.2012.01.013. DOI: https://doi.org/10.1016/j.radmeas.2012.01.013

M. Jain, A.S. Murray, L. Bøtter-Jensen, Characterisation of blue-light stimulated luminescence components in different quartz samples: implications for dose measurement, Radiat. Meas. 37 (2003) 441–449. https://doi.org/10.1016/S1350-4487(03)00052-0. DOI: https://doi.org/10.1016/S1350-4487(03)00052-0

O.M. Williams, N.A. Spooner, B.W. Smith, J.E. Moffatt, Extended duration optically stimulated luminescence in quartz, Radiat. Meas. 119 (2018) 42–51. https://doi.org/10.1016/J.RADMEAS.2018.09.005. DOI: https://doi.org/10.1016/j.radmeas.2018.09.005

E.G. Yukihara, A.J.J. Bos, P. Bilski, S.W.S. McKeever, The quest for new thermoluminescence and optically stimulated luminescence materials: Needs, strategies and pitfalls, Radiat. Meas. 158 (2022) 106846. https://doi.org/10.1016/J.RADMEAS.2022.106846. DOI: https://doi.org/10.1016/j.radmeas.2022.106846

A.G. Wintle, G. Adamiec, Optically stimulated luminescence signals from quartz: A review, Radiat. Meas. 98 (2017) 10–33. https://doi.org/10.1016/J.RADMEAS.2017.02.003. DOI: https://doi.org/10.1016/j.radmeas.2017.02.003

M. Oberhofer, A. Scharmann, Applied thermoluminescence dosimetry, Publ. 1981 Bristol by Hilger. (1981) 83–95. https://lib.ugent.be/catalog/rug01:000705616 (accessed September 30, 2024).

A.M.B. Silva, D.O. Junot, L.V.E. Caldas, D.N. Souza, Structural, optical and dosimetric characterization of CaSO4:Tb, CaSO4:Tb, Ag and CaSO4:Tb,Ag(NP), J. Lumin. 224 (2020) 117286. https://doi.org/10.1016/J.JLUMIN.2020.117286. DOI: https://doi.org/10.1016/j.jlumin.2020.117286

Downloads

Published

2024-11-28

Issue

Section

Articles

How to Cite

Luminescência opticamente estimulada em pastilhas de quartzo utilizando iluminação azul e verde. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4, p. e2568, 2024. DOI: 10.15392/2319-0612.2024.2568. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2568. Acesso em: 5 jan. 2025.

Similar Articles

1-10 of 266

You may also start an advanced similarity search for this article.