Break location influence in pressure vessel SBLOCA scenarios

Authors

  • María Lorduy Universitat Politècnica de València
  • Andrea Querol Universitat Politècnica de València
  • Sergio Gallardo Universitat Politècnica de València
  • Gumersindo Verdú Universitat Politècnica de València

DOI:

https://doi.org/10.15392/bjrs.v8i3B.712

Keywords:

SBLOCA, AM actions, TRACE

Abstract

The inspections performed in Davis Besse and in the South Texas Project Unit-I reactors pointed out safety issues regarding the structural integrity of the Pressure Vessel (PV). In these inspections, two anomalies were found: a wall thinning and degradation in the PV upper head of the Davis Besse reactor and a small amount of residue around of two instrument-tube penetration nozzles located in the PV lower plenum of the South Texas Project Unit-I reactor. The evolution of these defects could have resulted in Small Break Loss-Of-Coolant Accidents (SBLOCA) if they had not been detected in time. In this frame, the OECD/NEA considered the necessity to simulate these accidental sequences in the OECD/NEA ROSA Project using the Large Scale Test Facility (LSTF). This work is focused on simulating different hypothetical accidental scenarios in the PV using the thermal-hydraulic code TRACE5. These simulations allow studying the break localization influence in the transient and the effectiveness of the accident management (AM) actions considered mitigating the consequences of these hypothetical accidental scenarios.

Downloads

Download data is not yet available.

Author Biographies

  • María Lorduy, Universitat Politècnica de València
    Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental
  • Andrea Querol, Universitat Politècnica de València
    Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental
  • Sergio Gallardo, Universitat Politècnica de València
    Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental
  • Gumersindo Verdú, Universitat Politècnica de València
    Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental

References

USNRC - United States Nuclear Regulatory Commission. Davis-Besse Reactor Pressure Vessel Head Degradation, Overview, Lessons Learned, and NRC Actions Based on Les-sons Learned. NUREG/BR-0353, Rev. 1, 2008.

QUERAL, C.; GONZÁLEZ-CADELO, J.; JIMENEZ, G.; VILLALBA, E. Accident Management actions in an upper-head Small-Break Loss-Of-Coolant accident with high-pressure safety injection failed. Nuclear Technology, v. 175 (3), p. 572-593, 2011.

Thermohydraulic Safety Research Group, Nuclear Safety Research Center, Quick-look Data Report of ROSA/LSTF Test 6-2 (0.1% Pressure Vessel Bottom Small Break LOCA Ex-periment SB-PV-10 in JAEA). Japan Atomic Energy Agency, JAEA, (2006).

The ROSA-V Group. ROSA-V Large Scale Test Facility (LSTF) System Descrip-tion for the 3rd and 4h Simulated Fuel Assemblies. JAERI-Tech, 2003.

Thermohydraulic Safety Research Group, Nuclear Safety Research Center. Final Data Report of ROSA/LSTF Test 6-1 (1.9% Pressure Vessel Upper-head Small Break LOCA Ex-periment SB-PV-09 in JAEA). Japan Atomic Energy Agency, JAEA, 2006.

FREIXA, J.; MANERA, A. Analysis of an RPV upper head SBLOCA at the ROSA facility using TRACE. Nuclear Engineering and Design, v. 240, p. 1779-1788, 2010.

GALLARDO, S.; ABELLA, V.; VERDÚ, G. Assessment of TRACE 5.0 Against ROSA Test 6-1, Vessel Upper Head SBLOCA. NUREG/IA-0245, 2010.

QUEROL, A.; GALLARDO, S.; VERDÚ, G. Analysis of the Core Exit Temperature and the Peak Cladding Temperature During a SBLOCA: Application to a Scaled Up Model. Jour-nal of Nuclear Engineering and Radiation Science, v. 2 (2), p. 1-6, 2016.

Division of Risk Assessment and Special Projects. Office of Nuclear Regulatory Research, U. S Nuclear Regulatory Commission. TRACE V5.0. Theory manual. Field Equations, Solution Methods and Physical Models. U. S. Nuclear Regulatory Commission, 2007.

Division of Risk Assessment and Special Projects. Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission. TRACE V5.0. User’s manual. Volume 1: Input Specification. U. S. Nuclear Regulatory Commission, 2007.

QUEROL, A.; GALLARDO, S.; VERDÚ, G. Intermediate BLOCA Scenarios. Sensi-tivity Analysis with TRACE5. Transactions of the American Nuclear Society, v. 106, p. 1049–1052, 2012.

QUEROL, A.; GALLARDO, S.; VERDÚ, G. Simulation of a SBLOCA in a Hot Leg. Scaling Considerations and Application to a Nuclear Power Plant. Nucl. Eng. Des., v. 283, p. 81–99, 2015.

CARLOS, S.; QUEROL, A.; GALLARDO, S.; SANCHEZ-SAEZ, F.; VILLANUE-VA, J. F.; MARTORELL, S.; VERDÚ, G. Post-test analysis of the ROSA/LSTF and PKL counter-part tests. Nucl. Eng. Des., v. 297, p. 81–94, 2016.

KUKITA, Y.; TASAKA, K.; ASAKA, H.; YONOMOTO, T.; KUMAMARU, H. The effects of break location on PWR small break LOCA: Experimental study at the ROSA-IV LSTF. Nuclear Engineering and Design, v. 122, p. 255-262, 1990.

Downloads

Published

2021-02-13

Issue

Section

XX Meeting on Nuclear Reactor Physics and Thermal Hydraulics (XX ENFIR)

How to Cite

Break location influence in pressure vessel SBLOCA scenarios. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 8, n. 3B (Suppl.), 2021. DOI: 10.15392/bjrs.v8i3B.712. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/712.. Acesso em: 21 nov. 2024.

Similar Articles

21-30 of 88

You may also start an advanced similarity search for this article.