Biodisponibilidade de Metais-traço em Sedimentos: Uma Revisão

Authors

  • Vivianne L. B. Souza Centro Regional de Ciências Nucleares/Comissão Nacional de energia Nuclear
  • Vanessa L. Lima Centro Regional de Ciências Nucleares/ Comissão Nacional de Energia Nuclear
  • Clóvis A. Hazin Centro Regional de Ciências Nucleares/ Comissão Nacional de Energia Nuclear
  • Cássia K. L. Fonseca Centro Regional de Ciências Nucleares/ Comissão Nacional de Energia Nuclear
  • Suzana O. Santos Centro Regional de Ciências Nucleares/ Comissão Nacional de Energia Nuclear

DOI:

https://doi.org/10.15392/bjrs.v3i1A.135

Abstract

The chemical association of metal species in sediments provides indications about the release of trace metals by processes with toxic effects under certain environmental conditions. The knowledge of the way those metals are bond to sediments, serves to recognize specific sources of pollution in systems. Speciation plays an important role as far as bioavailability and toxicity are concerned. The accumulation of metal particles in sediments occur by the following mechanisms: a) Adsorption to the material fine particles (clay particles surface); b) precipitation of the element as carbonates, sulfates or oxides; c) co-precipitation of the element with iron and manganese oxides; d) complexation with the organic matter; e) incorporation into the crystal lattice of silicates. Currently, five phases are considered when studying the bioavailability of trace elements in sediments: a) exchangeable phase, MgCl2 (causes change in salinity); b) leachable phase, acetic acid (causes pH change); c) reducible phase, hydroxylamine hydrochloride (allowing the release of metals in anoxic conditions); d ) oxidizable phase, hydrogen peroxide (causes the degradation of organic matter); e) pseudo-residual phase, aqua-regia (allows the release of metals associated with minerals). In the last two fractions, metals are strongly bound to the sediment constituents and are not available for animals and plants. The organic phase is relatively stable in nature and metals present therein are removed by strong oxidizing conditions. The metals contained in the pseudo-residual phase measure the degree of environmental pollution, since a large amount of metals present in this phase indicates a lower degree of pollution.

Downloads

Download data is not yet available.

References

IUPAC. International Union of Pure and Applied Chemistry. Chemistry And Human Health Division Clinical Chemistry. Heavy metals— a meaningless term? Pure and Applied Chemistry. v. 74, n. 5, p. 793–807, 2002. IUPAC Technical Report. Disponível em: . Acesso em: 5 dez.

SILVERIO. P.F. Bases técnico-científicas para a derivação de Valores-Guia de Qualidade de Sedimentos para metais: Experimentos de campo e laboratório. 145 f. Tese (Doutorado em Ciências da Engenharia Ambiental)- Escola de Engenharia de São Carlos, Universidade de São Paulo, São Paulo, 2003.

FÖRSTNER, U., WITMANN, G. T. W. Metal pollution in the aquatic environment., 2. ed., New York. Springer-Verlag, 1981. 486p.

BEVILACQUA J.E., 1996. Estudos sobre a Caracterização e Estabilidade de Amostras de Sedimentos do Rio Tietê, SP. Tese de Doutorado do Instituto de Química da Universidade de São Paulo, São Paulo/SP. 1996. 171f.

LEITE. M. A. Análise do aporte, da taxa de sedimentação e da concentração de metais na água, plâncton e sedimentos do reservatório Salto Grande, Americana, SP. São Carlos, USP – Esc. Eng. São Carlos, Tese Doutorado. 2002. 199 p.

JESUS, H.C., COSTA. E. A., MENDONÇA, A. S. F., ZANDONADE, E. Distribuição de me-tais pesados em sedimentos do sistema estuarino da Ilha de Vitória-ES. Quim. Nova, v. 27, p.378- 386. 2004.

MARX. S. K., KAMBER, B. S. Trace-element systematics of sediments in the Murray–Darling Basin, Australia: Sediment provenance and palaeoclimate implications of fine scale chemical heterogeneity, Appl Geochem, v. 25, p. 1221 - 1237. 2014.

LICHT. O.A.B. A geoquímica multielementar na gestão ambiental: identificação e caracte-rização de províncias geoquímicas naturais, alterações antrópicas da paisagem, áreas favo-ráveis à prospecção mineral e regiões de risco para a saúde no Estado do Paraná. Tese de Doutorado da Universidade Federal de Paraná, Curitiba/ PR. Brasil. 2001. 236 f.

BELADEL, B., NEDJIMI, B., MANSOURI, A., BENAMAR, M. E. A. Trace elements determination in Algerian wheat by instrumental neutron activation analysis (INAA). J. Radioanal. Nucl. Ch., 2012, 293:497–501 DOI 10.1007/s10967-012-1784-0

SPOSITO, G. The chemistry of soils. New York, Oxford University Press, 1989. 345p.

KIEKENS, L. Behavior of heavy metals in soils. In: BERGLUND, S.; DAVIS, R.D.; L’HERMITE, P. (Ed.) Utilization of sewage sludge on land: rates of application and long-term effects of metals. Dordrecht: D. Reidel Publishing, 1983.

STOVER, R. C., SOMMERS, L. E., SILVEIRA, P. J. Evaluation of metals in wastewater sludge. J. Water Pollut. Control Fed. , v.. 48, p. 2165-2175.1976.

SPOSITO, G., LUND, L. J., CHANG, A. C. Trace metal chemistry in arid-zone field soil amended with sewage sludge I: Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil Sci. Soc. Am. J., v. 46, p. 260-264. 1982.

EMMERICK, W. E., LUND, L.J., PAGE, A. L., CHANG, H.M. Solid phases forms of heavy metals in sewage sludge-treated soils. J. Environ. Qual., v. 11, p. 174-178. 1982.

CHANG, A. C., PAGE, A. L., WARNEKE, J. E., GRGUREVIC, E.. Sequential extraction of soil heavy metals following a sludge application. J. Environ. Qual., v. 13, n.1, p. 33-38. 1984.

TAYLOR, R. W., XIU, H., MEHADI, A. A., SHUFORD, J. W., TADESSE, W. Fractionation of residual cadmium, copper, nickel, lead and zinc in previously sludge-amended soil. Commun. Soil Sci. Plan. Anal., v. 26. p. 2193-2204. 1995.

LUND, J., PAGE, A. L., SPOSITO, G. Determination and prediction of chemical forms of trace metals in sewage sludges and sludge-amended soil. Technical Report of Environmental Protection Agency. 1980.

CANDELARIA, L. M., CHANG. A. C. Cadmium activities, solution speciation and solid phase distribution of Cd in cadmium nitrate in sewage sludge-treated soil system. Soil Sci., v. 162, n. 10, p. 722-732. 1997.

TESSIER, A., CAMPBELL, P. G., BISSON, M. Sequential extration procedure for the speciation of particulate trace metals. Anal. Chem., v. 51, p. 844 - 851. 1979.

SHARAMEL, O., MICHALKE, B., KETTRUP, A. Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures. Sci. Total Envi-ron., v. 263, p. 11-22. 2000.

SALOMONS, W., FÖRSTENER, U. Trace metals analysis on polluted sediments, part II. Eval-uation of Enviromental Impact. Environ. Technol. Lett., v. 1, p. 506-517. 1980.

HARRISON, R. M., LAXEN, D. P. H., WILSON, S. J. Chemical association of lead, cadmium, copper and zinc in street dust and roadside soil. ENVIRON. SCI. TECHNOL., v. 15, pp. 1378-1383. 1981.

TESSIER, A.,. CAMPBELL, P. G. Partioning of trace metals in sediments: relationships with bioavailability. Hydrobiologia, v. 149, p. 247-258. 1987.

GISMERA, M. J., et al. Study of metal fractionation in river sediments: a comparison between kinetic and sequential extraction procedures. Environ. Pollut., v. 127, p.175 – 182. 2004.

PEREIRA, J. C., GUIMARÃES-SILVA, A. K., NALINI JÚNIOR H. A., PACHECO-SILVA, E., LENA. J. C. Distribuição, fracionamento e mobilidade de elementos traço em sedimentos superficiais, Quim. Nova, v. 30, n. 5, p.1249-1255. 2007.

XIANGDONG-LI; et al. Sequential extraction of soils for multi-element analysis by ICP-AES. Chem. Geol., v. p.124, 109-123. 1995.

CAÑADAS, R. C., SANCHIDRIAN. J. R., RIVERO, V. C. Distribución de Pb, Cd, Cu y Cr entre distintas fases sólidas em algunos tipos de suelos. Anales de Ed. Agrobiol., v. 45, p.613-630. 1986.

AMARAL-SOBRINHO, N. M. B.; VELOSO, A. C. X.; COSTA, L. M.; OLIVEIRA, C. Solubilidade de metais pesados em solo tratado com resíduo siderúrgico. Rev. Bras. Cienc. Solo, v. 21, p. 9-16. 1997.

SOUZA, V. L. B., HAZIN, C. A.; LIMA, R. A. Trace element dating by 210Pb: application to an estuarine lagoon. Nucl. Instrum. Methods in Phys. Res. A., v. 580, p. 690-693. 2007.

WANG, P., QU, E., LI, Z., SHUMAN, L. M. Fractions and availability of nickel in loessial soil amended with sewage sludge, J. Environ. Qual., v. 26, p 795 –801. 1997.

LIMA, V. L., SOUZA, V. L. B., NASCIMENTO, R. K., SANTOS, P. N. C., ALMEIDA, M. G. O., HAZIN. C. A. Metal fraction in sediments as a tool for assessing the availability of trace metals: the case of apipucos reservoir. Radiat. Phys. Chem., v. 95, p. 329-332, 2013.

SOARES, M. R. Coeficiente de Distribuição (Kd) de metais pesados em solos do estado de São Paulo. Tese de Doutorado da Escola Superior de Agricultura Luiz de Queiroz da Universi-dade de São Paulo, Piracicaba/SP, 2004. 202f.

STACKELBERG, K., MENZIE, C. A. A cautionary note on the use of species presence and absence data in deriving sediment criteria, Environ. Toxicol. Chem., v. 21, n. 2, p. 466-472. 2002.

D. M. DITORO, C. S. ZARBA, D.J. HANSEN, W.J. BERRY, R.C. SWARTZ, C. E.COWAN, S. P. PAVLOU, H. E.ALLEN, N. A.THOMAS, P. R.PAQUIN, Technical Basis for Establishing Sediment Quality Criteria for Nonionic Organic Chemicals Using Equilibrium Partitioning. En-viron. Toxicol. Chem. , v.10, p. 1541-1583. 1991.

Published

2015-05-21

How to Cite

Biodisponibilidade de Metais-traço em Sedimentos: Uma Revisão. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 3, n. 1A (Suppl.), 2015. DOI: 10.15392/bjrs.v3i1A.135. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/135.. Acesso em: 7 nov. 2024.