Simulação de um acelerador LINAC 6MV para determinação da dose de profundidade e razão tecido fantoma utilizando MCNPx e EGSnrc

Authors

  • Luiz Antônio Castelo e Silva Instituto Federal de São Paulo
  • Bruno Melo Mendes Centro de Desenvolvimento da Tecnologia Nuclear
  • Lucas Paixão Reis Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Anatomia e Imagem.
  • Bruno Rodrigues Gonçalves Centro de Desenvolvimento da Tecnologia Nuclear
  • Daisy Mary Marchezini dos Santos Centro de Desenvolvimento da tecnologia Nuclear
  • Raquel Luiza Mageste Fonseca Centro de Desenvolvimento da tecnologia Nuclear
  • Madelon Aparecida Fernandes Zenóbio Centro de Desenvolvimento da tecnologia Nuclear
  • Telma Cristina Ferreira Fonseca Centro de Desenvolvimento da Tecnologia Nuclear

DOI:

https://doi.org/10.15392/bjrs.v4i2.201

Keywords:

Método de Monte Carlo, Simulação computacional, Dosimetria, Radioterapia

Abstract

O objetivo deste trabalho é publicar os resultados obtidos de um exercício de intercomparação que envolve a modelagem e simulação de um feixe clínico de um acelerador linear de 6 MV em um campo 10x10 cm², utilizando dois diferentes códigos de Monte Carlo, o MCNPx e o EGSnrc. Devido ao grau de complexidade no processo de modelagem da geometria do sistema, a simulação e as respostas obtidas para os parâmetros dosimétricos, PDD20,10 e TPR20,10 foram comparadas com os dados experimentais obtidos no Instituto de Radioterapia e Megavoltagem de Minas Gerais. Os prinicpais desafios sobre a modelagem computacional do sistema foi relacionado e estão discutidos aqui, para fins didáticos na área de modelagem e simulação bem como na área de radioterapia.

Downloads

Download data is not yet available.

References

FONSECA, T. C. F. et. al. Estudo comparativo entre simulações de um sistema de monitoração ocupacional Interna utilizando diferentes códigos de Monte Carlo. Brazilian Journal of Radiation Sciences, v. 3, n. 1, 2015.

PAIXÃO, Lucas et al. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography. 2014.

BROGGIO, David et al. Monte Carlo modelling for the in vivo lung monitoring of enriched uranium: results of an international comparison. Radiation Measurements, v. 47, n. 7, p. 492-500, 2012.

LACERDA, M. A. S. et al. Use of the MCNPX to calculate the neutron spectra around the GE-PETtrace 8 cyclotron of the CDTN/CNEN, Brazil. Applied Radiation and Isotopes, v. 83, p. 235-241, 2014.

ROGERS, D. W. O. Fifty years of Monte Carlo simulations for medical physicsThis paper is dedicated to W Ralph Nelson and to the memory of Martin J Berger, two men who have left indelible marks on the field of Monte Carlo simulation of electron–photon transport. Physics in medicine and biology, v. 51, n. 13, p. R287, 2006.

PAIXÃO, L. et al. Monte Carlo study of a new I-125 brachytherapy prototype seed with a ceramic radionuclide carrirer and radiographic marker. Journal of Applied Clinical Medical Physics, v. 13, p. 74-82, 2012.

FONSECA, T. C. F. et al. A methodology to develop computational phantoms with adjustable posture for WBC calibration. Physics in Medicine and Biology, v. 59, p. 6811-6825, 2014.

PAIXÃO, L. et al. New method for generating breast models featuring glandular tissue spatial distribution. Radiation Physics and Chemistry, v. 119, p. 200-206, 2016.

KAWRAKOW, I.; ROGERS, D. The EGSnrc code system: Monte Carlo simulation of electron and photon transport. 2000.

PIANOSCHI, Thatiane Alves. Avaliação do código de simulação Monte Carlo PENELOPE para aplicações em geometrias delgadas e feixes de radiodiagnóstico. Tese de Doutorado. Universidade de São Paulo.

ALLISON, John et al. Geant4 developments and applications. Nuclear Science, IEEE Transactions on, v. 53, n. 1, p. 270-278, 2006.

BRIESMEISTER, J. F. Los Alamos National Laboratory Report LA-12625-M. Los Alamos, NM, USA, 1997.

LIU, Wenlei et al. Algorithm for x-ray beam hardening and scatter correction in low-dose cone-beam CT: Phantom studies. In: SPIE Medical Imaging. International Society for Optics and Photonics, 2016. p. 978332-978332-8.

SOURIS, Kevin; LEE, John Aldo; STERPIN, Edmond. Fast multipurpose Monte Carlo simulation for proton therapy using multi-and many-core CPU architectures. Medical Physics, v. 43, n. 4, p. 1700-1712, 2016.

AGUIRRE, Eder et al. Impact of photon cross section systematic uncertainties on Monte Carlo-determined depth-dose distributions. arXiv preprint arXiv:1603.08890, 2016.

ALMOND, Peter R. et al. AAPM's TG–51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Medical physics, 26 (1999), v. 26, n. 9, p. 1847–1870, 1999.

IAEA, TRS. 398. Absorbed dose determination in external beam radiotherapy: An International Code of Practice for Dosimetry based on standards of absorbed dose to water. Vienna International Atomic Energy Agency, 2000.

ANDREO, P. et al. Radiation oncology physics: a handbook for teachers and students. INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2005

ICRU, I. I. Tissue Substitutes in Radiation Dosimetry and Measurement. International Commission on Radiation Units and Measurements, 1989.

KHAN, Faiz M.; GIBBONS, John P. Khan's the physics of radiation therapy. Lippincott Williams & Wilkins, 2014.

PURDY, James A.; PEREZ, Carlos A.; VIJAYAKUMAR, Srinivasan. Technical basis of radiation therapy. Springer, 2012.

MEDINA, Antonio Lopez et al. Comparison between TG-51 and TRS-398: electron contamination effect on photon beam-quality specification. Physics in medicine and biology, v. 49, n. 1, p. 17, 2003.

SAMPLE, Scott. Evaluation of Beam Angle Scoring Using MCNP and Applied to IMRT. 2007. Tese de Doutorado. Georgia Institute of Technology.

VISED X_22S: Visual Editor for interactively constructing & visualizing MCNPX geometry. Disponível em: <http://mcnpvised.com>. Último acesso: 05 Abr. 2016.

FONSECA, T. C. F. et al. Simulation of Both Percentage Depth Dose and Tissue Phantom Ratio in Water Phantom for 6 MV Linac Photon Beam using Different MC Codes. 2nd International Conference on Dosimetry and its Applications (ICDA-2), Guildford, United Kingdom, 2016. No prelo.

Published

2016-11-21

How to Cite

Silva, L. A. C. e, Mendes, B. M., Reis, L. P., Gonçalves, B. R., Santos, D. M. M. dos, Fonseca, R. L. M., Zenóbio, M. A. F., & Fonseca, T. C. F. (2016). Simulação de um acelerador LINAC 6MV para determinação da dose de profundidade e razão tecido fantoma utilizando MCNPx e EGSnrc. Brazilian Journal of Radiation Sciences, 4(2). https://doi.org/10.15392/bjrs.v4i2.201

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>