Bony-based and prostate-based image guidance for lo-calized prostate cancer radiotherapy

Authors

  • Saulo Santos Fortes Instituto Nacional de Câncer José Alencar Gomes da Silva
  • Luiz Antonio Ribeiro da Rosa Instituto de Radioproteção e Dosimetria

DOI:

https://doi.org/10.15392/bjrs.v8i1.1175

Keywords:

prostate radiotherapy, cone-beam computed tomography, repositioning strategy

Abstract

An important modality for the treatment of prostate cancer is teletherapy. The use of image-guided radiotherapy (IGRT) is a valuable tool in this treatment. This study retrospectively compared how repositioning the patient based on bone structure (B-ISO) and the prostate itself (P-ISO) affected the volumetric dose in the rectum, bladder, and clinical treatment volume (CTV). Additionally, the probability of normal tissue complication (NTCP) for the rectum was computed. We evaluated 155 cone-beam computed tomography (CBCT) from 8 patients. The treatment plans used beam modulation techniques. The planning target volume (PTV) margin adopted in both scenarios was 1 cm. The organs of interest were outlined over each CBCT and then treatment plans were applied so that the absorbed dose could be computed. NTCP values were calculated for the rectum. Analyzing dose-volume metrics published by the Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC), there was no significant difference between the two repositioning strategies for the rectum and bladder. There was a slight degradation in CTV coverage for the B-ISO strategy, but still with adequate coverage. Analysis of the uniform equivalent dose (EUD) and NTCP for the rectum showed little sensitivity to the strategy used. The present study showed that the use of CBCT in radiotherapy for prostate cancer treatment did not significantly improve volumetric doses for the rectum, bladder, and CTV, as well as NTCP for the rectum.

Downloads

Download data is not yet available.

References

BORGES, k. A. M., SCHILITHZ, F. O. C., LIMA, F. C. S., FERREIRA, J. D., DE MORAIS, L. A., SANTOS, M. O., REBELO, M. S., COSTA, R. M. O. Estimativa 2018: incidência do câncer no Brasil. Instituto Nacional de Câncer José de Alencar Gomes da Silva, Coordenação de Prevenção e Vigilância, 2017.

ZHONG, Q., GAO, H., LI, G., XIU, X., WU, Q., LI, M., XU, Y. Significance of image guidance to clinical outcomes for localized prostate cancer. BioMed Research Int, v. 14, 2014.

NAKAMURA, K., MIZOWAKI, T., INOKUCHI, H., IKEDA, I., INOUE, T., KAMBA, T., OGAWA, O., HIRAOKA, M. Decreased acute toxicities of intensity‑modulated ra-diation therapy for localized prostate cancer with prostate‑based versus bone‑based im-age guidance. Int J Clin Oncol, v. 23, p. 158-164, 2018.

ZIETMAN, A.L., DESILVIO, M.L., SLATER, J.D., ROSSI, C. J. Jr., MILLER, D. W., ADAMS, J. A., SHIPLEY, W. U. Comparison of conventional-dose vs. high-dose con-formal radiation therapy in clinically localized adenocarcinoma of the prostate: a ran-domized controlled trial. JAMA, v. 294, p.1233–1239, 2005.

ZELEFSKY, M. J., CHAN H., HUNT M., YAMADA, Y., SHIPPY, A. M., AMOLS, H. Long-term outcome of high dose intensity-modulated radiation therapy for patients with clinically localized prostate cancer. J Urol, v. 176, p. 1415–1419, 2006.

LANGEN, K.M., WILLOUGHBY, T.R., MEEKS, S.L., SANTHANAN, A., CUN-NINGHAN, A., LEVINE, L., KUPELIAN, P. A. Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys, v. 71, p. 1084–1090, 2008.

BUJOLD, A., CRAIG, T., JAFFRAY, D, DAWSON, L.A. Image-Guided Radiotherapy: Has It Influenced Patient Outcomes? Semin Radiat Oncol, v. 22, p. 50-61, 2012.

KUPELIAN, P.A., TWYLA, R., WILLOUGHBY, M.S., KLEIN, E. A., MAHADEVAN, A. Impact of image guidance on outcomes after external beam radiotherapy for local-ized prostate cancer. Int. J. Radiation Oncology Biol Phys, v. 70, n. 4, p. 1146–1150, 2008.

GAY, H.A., BARTHOLD, H.J., O’MEARA, E., BOSCH, W. R., EL NAQA, I., AL-LOZI, R., ROSENTHAL, R. A., LAWTON, C., LEE, W. R., SANDLER, H., ZIET-MAN, A., MYERSON, R., DAWSON, L. A., WILLETT, C., CACHNICH, L. A., JHINGRAN, A., PORTELANCE, S., RYU, J., SMALL, W. Jr., GAFFNEY, D., VISWANATHAN, A. N., MICHALSKI, J. M. Pelvic normal tissue contouring guide-lines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas. Int. J. Radiat Oncol Biol Phys, v. 83, n. 3, p. 353-362, 2012.

MARKS, L. B., YORKE, E. B., JACKSON, A., TEN HAKEN, R. K., CONSTINE, L. S., EISBRUCH, A., BENTZEN, S. M., NAM, J., DEASY, J. O. Use of Normal Tissue Complication Probability Models in the Clinic. Int J Radiat Oncol Biol Phys, v. 76, supl. 3, p. S10-S19, 2010.

LYMAN, J. T., WOLBARST, A. B. Optimization of radiation therapy, IV: A dose-volume histogram reduction algorithm. Int J Radiat Oncol BioI Phys, v. 17, n. 2, p. 433-436, 1989.

MOHAN, R., MAGERAS, G.S., BALDWIN, B., BREWSTER, L. J., KUTCHER, G. J., LEIBEL, S., BURMAN, C. M., LING, C. C., FUKS, Z. Clinically relevant optimization of 3-D conformal treatments. Med Phys, v. 19, n. 4, p. 933–944, 1992.

GULLIFORD, S. L., PARTRIDGE, M., SYDES, M., WEBB, S., EVANS, P. M., DEAR-NALEY, D. P. Parameters for the Lyman Kutcher Burman (LKB) model of normal tis-sue complication probability (NTCP) for specific rectal complications observed in clin-ical practice. Radiother Oncol, v. 102, p. 347-351, 2012.

NAHM, F. S. Nonparametric statistical tests for the continuous data: the basic concept and the practical use. Korean J of Anesth, v. 69, n. 1, p. 8-14, 2016.

SCHALLENKAMP, J. M., HERMAN, M. G., KRUSE, J. J., PISANSKY, T. M. Prostate position relative to pelvic bony anatomy based on intraprostatic gold markers and elec-tronic portal imaging. Int J Radiat Oncol Biol Phys, v. 63, p. 800-811, 2005.

FIORINO, C., FOPPIANO, F., FRANZONE, P., BROGGI, S., CASTELLONE, P., MARCENARO, M., CALANDRINO, R., SANGUINETI, G. Rectal and bladder motion during conformal radiotherapy after radical prostatectomy. Radiother Oncol, v. 2005, n. 74, p. 187-195, 2006.

CHUNG, H. T., XIA, P., XAN, L. W., PARK-SOMERS, E., ROACH, M. 3rd. Does im-age-guided radiotherapy improve toxicity profile in whole pelvic-treated high-risk pros-tate cancer? Comparison between IG-IMRT and IMRT. Int. J. Radiation Oncology Biol Phys, v. 73, n. 1, p. 53–60, 2009.

ZUCCA, S., CARAU, B., SOLLA, I., GARIBALDI, E., FARACE, P., LAY, G., MELEDDU, G., GABRIELE, P. Prostate image-guided radiotherapy by megavolt cone-beam CT. Strahlenther Onkol, v. 187, p. 473-478, 2011.

HIROSE, Y., NAKAMURA, M., TOMITA, T., KITSUDA, K., NOTOGAWA, T., NIKI, K., NAKAMURA, K., ISHIGAKI, T. Evaluation of different set-up error corrections on dose-volume metrics in prostate IMRT using CBCT images. J Radiat Research, v. 55, p. 966-975, 2014.

TONDEL, H., LUND, J. A., LYDERSEN, S., WANDERAS, A. D., AKSNESSAEDER, B., JENSEN, C. A., KAASA, S., SOLBERG, A. Radiotherapy for prostate cancer – Does daily image guidance with tighter margins improve patient-reported outcomes compared to weekly orthogonal verified irradiation? Results from a randomized con-trolled trial. Radioth Oncol, v. 126, p. 229-235, 2018.

MZENDA, B., HOSSEINI-ASHRAFI, M. E., PALMER, A., HODGSON, D. F. Determi-nation of targeting volumes in radiotherapy and the implications of technological ad-vances: a literature review. J Radioth Pract, v. 8, p. 41-51, 2009.

KUPELIAN, P.A., LANGEN, K.M., ZEIDAN, O.A., MEEKS, Z. L., WILLOUGHBY, T. R., WAGNER, T. H., JESWANE, R., RUCHALA, K. J., HAIMERL, J. OLIVEIRA, G. H. Daily variations in delivered doses in patients treated with radiotherapy for localized prostate cancer. International Journal of Radiation Oncology Biology Physics, v. 66, n. 3, p. 876–882, 2006.

ZELEFSKY, M. J., KOLLMEIER, M., COX, B., FIDALEO, A., SPERLING, D., PEI, X., CARVER, B., COLEMAN, J., LOVELOCK, M., HUNT, M. Improved clinical out-comes with high-dose image-guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. International Journal of Radiation Oncology Biology Physics, v. 84, n. 1, p. 125–129, 2012.

KUPELIAN, P.A., LANGEN, K.M., WILLOUGHBY, T.R., ZEIDAN, O. A., MEEKS S. L. Image-guided radiotherapy for localized prostate cancer: treating a moving target. Semin Radiat Oncol, v. 18, p. 58-66, 2018.

WALTER, C., BODA-HEGGEMANN, J., WERTZ, H., LOEB, I., RAHN, A., LOHR, F., WENZ, F. Phantom and in-vivo measurements of dose exposure by image-guided radio-therapy (IGRT): MV portal images vs. kV portal images vs. cone-beam CT. Radiother-apy and Oncology, v. 85, n. 3, p. 418–423, 2007.

PERRIER, L., MORELLE, M., POMMIER, P., LAGRANGE, J. L., LAPLANCHE, A., DUDOUET, P., SUPIOT, S., CHAUVET, B., NGUYEN, T. D., CREHANGE, G., BECKENDORF, V., PENE, F., MURACCIOLI, X., BACHAUD, J. M., LE PRISÉ, E., DE CREVOISIER, R. Cost of prostate image-guided radiation therapy: results of a ran-domized trial. Radiotherapy and Oncology, v. 106, n. 1, p. 50–58, 2013.

ZELEFSKY, M.J., PEI, X., CHOU, J.F., SCHECHTER, M., KOLLMEIER, M., COX, B., YAMADA, Y., FIDALEO, A., SPERLING, D., HAPPERSETT, L., ZHANG, Z. Dose escalation for prostate cancer radiotherapy: predictors of long-term biochemical tumor control and distant metastases-free survival outcomes. European Urology, v. 60, n. 6, p. 1133–1139, 2011.

SONG, W.Y., WONG, E., BAUMAN, G.S., BATTISTA, J. J., VAN DYK, J. Dosimetric evaluation of daily rigid and nonrigid geometric correction strategies during on-line image-guided radiation therapy (IGRT) of prostate cancer. Med Phys, v. 34, p. 352–65, 2007.

BITTNER, N., BUTLER, W. M., REED, J. L., MURRAY, B. C., KURKO, B. S., WALLNER, K. E., MERRICK, G. S. Electromagnetic tracking of intrafraction prostate displacement in patients externally immobilized in the prone position. Int J Radiat Oncol Biol Phys, v. 77, p. 490–5, 2010.

XIE, Y., DJAJAPUTRA, D., KING, C. R., HOSSAIN, S., MA, L., XING, L. Intrafrac-tional motion of the prostate during hypofractionated radiotherapy. Int J Radiat Oncol Biol Phys, v. 72, p. 236–46, 2008.

HUANG, T.C., CHOU, K.T., YANG, S.N., CHANG, C. K. LIANG, J. A., ZHANG, G. Fractionated changes in prostate cancer radiotherapy using cone-beam computed to-mography. Medical Dosimetry, v.40, p. 222-225, 2015.

LI, W., VASSIL, A., GODLEY, A., MOSSOLI, L. M., SHANG, Q., XIA, P. Using daily diagnostic quality images to validate planning margins for prostate interfraction varia-tions. J Appl Clin Med Phys, v. 17, n. 3, p. 61-74, 2016.

KUPELIAN, P., WILLOUGHBY, T., MAHADEVAN, A., DJEMIL, T., WEINSTEIN, G., JANI, S., ENKE, C., SOLBERG, T., FLORES, N., LIU, D., BEYER, D., LEVINE, L. Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. In-ternational Journal of Radiation Oncology Biology Physics, v. 67, n. 4, p. 1088–1098, 2007.

VAN LIN, E. N. J. T., VAN DER VIGHT, L. P., WITJES, J. A. The effect of an en-dorectal balloon and off-line correction on the interfraction systematic and random prostate position variations: a comparative study. International Journal of Radiation Oncology Biology Physics, v. 61, n. 1, p. 278–288, 2005.

SCARBROUGH, T. J., GOLDEN, N. M., TING, J. Y., FULLER, C. D., WONG, A., KU-PELIAN, P. A., TOMAS, C. R. Jr. Comparison of ultrasound and implanted seed mark-er prostate localization methods: Implications for image-guided radiotherapy. Interna-tional Journal of Radiation Oncology Biology Physics, v. 65, n. 2, p. 378–387, 2006.

BAKER, M. e BEHRENS, C.F. Prostate displacement during transabdominal ultrasound image-guided radiotherapy assessed by real-time four-dimensional transperineal moni-toring. Acta Oncol, v. 54, n. 9, p. 1508-1514, 2015.

NIJKAMP, J., POS, F. J., NUVER, T. T., DE JONG, R., REMEIJER, P., SONKE, J. J., LEBESQUE, J. V. Adaptive radiotherapy for prostate cancer using kilovoltage cone-beam computed tomography: first clinical results. International Journal of Radiation Oncology Biology Physics, v. 70, n. 1, p. 75–82, 2008.

Downloads

Published

2020-03-22

Issue

Section

Articles

How to Cite

Bony-based and prostate-based image guidance for lo-calized prostate cancer radiotherapy. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 8, n. 1, 2020. DOI: 10.15392/bjrs.v8i1.1175. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/1175.. Acesso em: 4 may. 2024.

Similar Articles

1-10 of 259

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)