Natural radionuclides in soil profiles and sediment cores from Jundiaí reservoir, state of Sao Paulo.

Authors

  • Pedro do Nascimento Gonçalves Instituto de Pesquisas Energéticas e Nucleares
  • Sandra Regina Damatto Instituto de Pesquisas Energéticas e Nucleares
  • Lucio Leonardo Instituto de Pesquisas Energéticas e Nucleares and Centro Universitário São Camilo
  • Joseilton Marques Souza Instituto de Pesquisas Energéticas e Nucleares

DOI:

https://doi.org/10.15392/bjrs.v9i1A.1453

Keywords:

Natural radionuclides, Jundiaí reservoir, gamma spectrometry.

Abstract

The activity concentration of natural radionuclides in soils and sediments is dependent on many factors, such as the rock parental material, pedogenic and weathering processes, physical and chemical properties of the environment, anthropogenic sources, among other aspects. There are few studies about the levels of natural radionuclides in reservoirs in both, international and national, literature. The objective of this paper was to evaluate the activity concentrations of 238U and 232Th by Instrumental Neutron Activation Analysis and 226Ra, 210Pb, 228Ra, 228Th and 40K by gamma spectrometry in two soil profiles and three sediment cores collected in the catchment area of Jundiai reservoir, located in the state of São Paulo, Brazil. Principal component analysis was applied to verify the correlation of the activity concentrations of the natural radionuclides with physical and chemical properties of soil and sediment samples.  The mean activity concentrations of the radionuclides in the soil profiles 1 and 2 were, respectively: 238U – 37(1) and 32(1) Bq.kg-1; 232Th – 91(1) and 60(1) Bq.kg-1; 226Ra – 66(1) and 51(1) Bq.kg-1; 210Pb – 35(1) and 37(1) Bq.kg-1; 228Ra – 34(1) and 27(1) Bq.kg-1; 228Th – 78(1) and 58(1) Bq.kg-1; 40K – 96(2) and 171(7) Bq.kg-1. For the three sediment cores analyzed, the average activities  concentrations of the radionuclides were, respectively: 238U – 64(0.5), 47(0.1) and 44(0.2) Bq.kg-1; 232Th – 122(2), 100(1) and 64(1) Bq.kg-1; 226Ra – 74(2), 71(1) and 45(1) Bq.kg-1; 210Pb – 70(3), 56(2) and 55(2) Bq.kg-1; 228Ra – 53(1), 41(1) and 33(1) Bq.kg-1; 228Th – 100(2), 92(1) and 63(2); 40K – 316(5), 237(1) and 136(2) Bq.kg-1.

Downloads

Download data is not yet available.

References

EISENBUD, M.; GESELL, T. Environmental Radioactivity. 4rd ed. San Diego: Academic Press, 1997.

UNSCEAR - United Nations Scientific Committee On The Effects Of Atomic Radiation. Sources and effects of ionizing radiation, 2000, v. 38, n. 2, p. 35-37, 2001.

GROTZINGER, J.; PRESS, F. S.; JORDAN, T. H. Understanding Earth. Macmillan, 2004.

MADRUGA, M. J.; SILVA, L.; GOMES, A. R.; LIBANIO, A.; REIS, M. The influence of particle size on radionuclide activity concentrations in Tejo River sediments. J Environ Radioact, v.132, p. 65-72, 2014.

ANJOS, R. M.; VEIGA, R.; SOARES, T.; SANTOS, A. M. A.; AGUIAR, J. G.; FRASCÁ, M. H. B. O.; BRAGE, J. A. P.; UÊDA, D.; MANGIA, L.; FACURE, A.; MOSQUERA, B.; CARVALHO, C.; GOMES, P. R. S. Natural radionuclides distribution in Brazilian commercial granites. Radiat Meas, v.39, p. 245-253, 2005.

IVANOVICH, M.; HARMON, R. S. Uranium-series Disequilibrium: Application to Earth, Marine and Enviromental Sciences. Oxford: Clarendon Press, 1992.

TUNDISI, J.G. Reservatórios como sistemas complexos: teoria, aplicações e perspectivas para usos múltiplos. Ecologia de reservatórios: estrutura, função e aspectos sociais, p. 19-38, 1999.

LAMPARELLI M. C.; MARTINS M. C.; SALVADOR M. E. P.; COSTA M. P.; ARAGÃO M. P.; BOTELHO M. J. C.; CARVALHO M. C.; SOUZA R. C. R; BURATINI S. V. Considerações sobre aspectos limnológicos do reservatório Jundiaí. São Paulo: Relatório Tecnico, 1996. In: PIRES, D. A. (2014). Diversidade (alfa, beta e gama) da comunidade fitoplanctônica de quatro reservatórios do Alto Tietê, Estado de São Paulo, com diferentes graus de trofia (Doctoral dissertation, Msc Thesis, Instituto de Botânica de São Paulo, Brazil).

CETESB - Companhia de Tecnologia de Saneamento Ambiental. Relatório de qualidade das águas interiores do estado de São Paulo, 2016. São Paulo, 2017.

PERROTTA, M. M.; SALVADOR, E. D.; LOPES, R. C.; D'AGOSTINO, L. Z.; PERUFFO, N.; GOMES, S. D.; SACHS, L. L. B.; MEIRA, V. T.; GARCIA, M. G. M.; LACERDA FILHO, J. V. Mapa Geológico do Estado de São Paulo, escala 1: 750.000. Programa Geologia do Brasil, PGB - CPRM, São Paulo, 2005.

USDA - United States Department of Agriculture. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 1999.

SCHULTE, E. E; HOPKINS, B. G. Estimation of soil organic matter by weight loss-on-ignition. In: MAGDOF F.R.; HANLON E.A.; HANLOAND M.A. Soil organic matter: Analysis and interpretation, p. 21–31, 1996.

HYPOLITO, R.; ANDRADE, S.; EZAKI, S. Geoquímica da Interação Água/Rocha/Solo: Estudos Preliminares. São Paulo, 2011.

INTERWINNER. “InterWinner (WinnerGamma) Spectroscopy Program Family Version 6.0”. EG&G ORTEC, 2004.

NETO, J. M; MOITA, G. C. Uma introdução à análise exploratória de dados multivariados. Quím nova, v. 21, n. 4, p. 467-469, 1998.

BRADY, N. C. WEIL, R. R.; WEIL, R. R. The nature and properties of soils. Upper Saddle River, NJ: Prentice Hall, 2008.

PORCELLI D. Investigating groundwater processes using U - and Th - series nuclides in U-Th series nuclides in aquatic systems. J Environ Radioact, v. 13, 2008.

Downloads

Published

2021-04-30

Issue

Section

The Meeting on Nuclear Applications (ENAN) 2019

How to Cite

Natural radionuclides in soil profiles and sediment cores from Jundiaí reservoir, state of Sao Paulo. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 9, n. 1A, 2021. DOI: 10.15392/bjrs.v9i1A.1453. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/1453.. Acesso em: 19 nov. 2024.

Similar Articles

1-10 of 324

You may also start an advanced similarity search for this article.