An overview study on the TL and OSL dosimetry patent processes over time

Authors

DOI:

https://doi.org/10.15392/2319-0612.2023.2107

Keywords:

dosimetry, thermoluminescence, optically stimulated luminescence, patent, intellectual property

Abstract

Since its discovery, ionizing radiation has been used in many different applications. Materials and methods have been developed to measure and quantify radiation doses.  Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) are two techniques used for radiation dosimetry. Both TL and OSL are primarily applied in several areas, such as dating of ancient materials, equipment quality control and individual monitoring. One of the parameters to measure the knowledge and development of a technology is the number of patents related to the field. In this work, we established a methodology for patent search on the World Intellectual Property Organization (WIPO) database aiming to review the development of TL and OSL dosimetry over time. We concluded that along with the OSL technique development, the TL technique should continue to be explored in radiation dosimetry.

Downloads

Download data is not yet available.

References

OKUNO, E.; YOSHIMURA, E. Física das Radiações. Sao Paulo: Oficina de Textos, 2010.

United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UN-SCEAR 2020/2021 Report Volume III, Vienna: UNSCEAR, 2021. Available at: https://www.unscear.org/unscear/en/publications/2020_2021_3.html

WERNLI, C. A Short History And Critical Review Of Individual Monitoring. Radiat Prot Do-simetry 2016;170:4–7. https://doi.org/10.1093/RPD/NCW025. DOI: https://doi.org/10.1093/rpd/ncw025

NIU, S. Radiation protection of workers SafeWork Programme on Safety and Health at Work and the Environment. SafeWork Inf Note Ser 2011.

ICRP. ICRP Publication 103: The 2007 Recommendations of the International Commission on Radiological Protection. Ann ICRP 2007;37:1–332.

IZEWSKA, J.; ANDREO, P.; VATNITSKY, S.; SHORTT, K.R. The IAEA/WHO TLD postal dose quality audits for radiotherapy: a perspective of dosimetry practices at hospitals in developing countries. Radiother Oncol 2003;69:91–7. DOI: https://doi.org/10.1016/S0167-8140(03)00245-7

KRY, S.F.; PETERSON, C.B.; HOWELL, R.M.; IZEWSKA, J.; LYE, J., CLARK, C.H. et al. Remote beam output audits: A global assessment of results out of tolerance. Phys Imaging Radiat Oncol 2018;7:39–44. https://doi.org/10.1016/j.phro.2018.08.005. DOI: https://doi.org/10.1016/j.phro.2018.08.005

RAMOS, F.D.S.; VASCONCELOS, R.D.S.; GONÇALVES, M.D.S.; OLIVEIRA, M.V.L. Análise comparativa dos testes de controle de qualidade em tomografia computadorizada de acordo com as legislações nacional e internacional. Brazilian J Radiat Sci 2015;3. https://doi.org/10.15392/bjrs.v3i1a.111. DOI: https://doi.org/10.15392/bjrs.v3i1A.111

LANDAUER - Radiation Monitoring and Medical Physics Consulting n.d. https://www.landauer.com/ (accessed January 3, 2023).

YUKIHARA, E.G.; MCKEEVER, S.W.S. Optically Stimulated Luminescence: Fundamentals and Applications. Wiley, 2011. DOI: https://doi.org/10.1002/9780470977064

SOUZA, S. O.; YAMAMOTO, T.; D'ERRICO, F. State of the art of solid state dosimetry. In: INTERNATIONAL JOINT CONFERENCE RADIO, 2014,. Gramado, Brazil.

BØTTER-JENSEN, L.; MCKEEVER, S.W.S. WINTLE AG. Optically Stimulated Luminescence Dosimetry. Amsterdam: Elsevier; 2003. DOI: https://doi.org/10.1016/B978-044450684-9/50091-X

ANTONOV-ROMANOVSKY, V.V.; KEIRUM-MARKUS, I.F.; POROSHINA, M.S.; TRAPEZNIKOVA, Z.A. Dosimetry of ionizing radiation with the aid of infrared sensitive phosphors. Conf. Acad. Sci. U.S.S.R. Peac. Uses At. Energy, Moscow: 1955, p. 239–50.

WINTLE, A.G. Luminescence dating: laboratory procedures and protocols. Radiat Meas 1997;27:769–817. DOI: https://doi.org/10.1016/S1350-4487(97)00220-5

AKSELROD, M.S.; KORTOV, V.S.; GORELOVA, E.A. Preparation and properties of a-Al2O3:C. Radiat Prot Dosimetry 1993;47:159–64. DOI: https://doi.org/10.1093/rpd/47.1-4.159

AKSELROD, M.S.; LUCAS, A.C.; POLF, J.C.; MCKEEVER, S.W.S. Optically stimulated luminescence of Al2O3. Radiat Meas 1998;29:391–9. DOI: https://doi.org/10.1016/S1350-4487(98)00061-4

MARKEY, B.G.; COLYOTT, L.E.; MCKEEVER, S.W.S. Time-resolved optically stimulated luminescence from a-Al2O3:C. Radiat Meas 1995;24:457–63. DOI: https://doi.org/10.1016/1350-4487(94)00119-L

YUKIHARA, E.G.; MCKEEVER, S.W.S.; AKSELROD, M.S. State of art: optically stimulated luminescence dosimetry - frontiers of future research. Radiat Meas 2014;71:15–24. DOI: https://doi.org/10.1016/j.radmeas.2014.03.023

SAWAKUCHI, G.O.; SAHOO, N.; GASPARIAN, P.B.R.; RODRIGUEZ, M.G.; ARCHAMBAULT, L., TITT, U.; et al. Determination of average LET of therapeutic proton beams using Al2O3:C optically stimulated luminescence (OSL) detectors. Phys Med Biol 2010;55. https://doi.org/10.1088/0031-9155/55/17/006. DOI: https://doi.org/10.1088/0031-9155/55/17/006

YUKIHARA, E.G.; GASPARIAN, P.B.R.; SAWAKUCHI, G.O.; RUAN, C.; AHMAD, S.; KALAVAGUNTA, C.; et al. Medical applications of optically stimulated luminescence dosimeters (OSLDs). Radiat. Meas., vol. 45, 2010, p. 658–62. https://doi.org/10.1016/j.radmeas.2009.12.034. DOI: https://doi.org/10.1016/j.radmeas.2009.12.034

MCKEEVER, S.W.S.; MOSCOVITCH, M. On the advantages and disadvantages of optically stimulated luminescence dosimetry and thermoluminescence dosimetry. Radiat Prot Dosimetry 2003;104:263–70. DOI: https://doi.org/10.1093/oxfordjournals.rpd.a006191

GASPARIAN, P.B.R.; RUAN, C.; AHMAD, S.; KALAVAGUNTA, C.; CHENG, C.Y.; YUKIHARA, E.G. Demonstrating the use of optically stimulated luminescence dosimeters (OSLDs) for measurement of staff radiation exposure in interventional fluoroscopy and helmet output factors in radiosurgery. Radiat Meas 2010;45. https://doi.org/10.1016/j.radmeas.2009.12.001. DOI: https://doi.org/10.1016/j.radmeas.2009.12.001

PRADHAN, A.S.; LEE, J.I.; KIM, J.L. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications. J Med Phys 2008;33:85–99. https://doi.org/10.4103/0971-6203.42748. DOI: https://doi.org/10.4103/0971-6203.42748

TWARDAK, A.; BILSKI, P.; MARCZEWSKA, B.; LEE, J.I.; KIM, J.L.; GIESZCZYK, W.; et al. Properties of lithium aluminate for application as an OSL dosimeter. Radiat Phys Chem 2014;104:76–9. https://doi.org/10.1016/j.radphyschem.2014.05.046. DOI: https://doi.org/10.1016/j.radphyschem.2014.05.046

YOSHIMURA, E.M.; YUKIHARA, E.G. Optically Stimulated Luminescence: searching for new dosimetric materials. Nucl Instruments Methods Phys Res B 2006;250:337–41. DOI: https://doi.org/10.1016/j.nimb.2006.04.134

OLIVEIRA, L.C.; BAFFA, O. A new luminescent material based on CaB6O10:Pb to detect radiation. J Lumin 2017;181:171–8. https://doi.org/10.1016/J.JLUMIN.2016.09.009. DOI: https://doi.org/10.1016/j.jlumin.2016.09.009

YUKIHARA, E.G.; DOULL, B.A.; GUSTAFSON, T.; OLIVEIRA, L.C.; KURT, K.; MILLIKEN, E.D. Optically stimulated luminescence of MgB4O7:Ce,Li for gamma and neutron dosimetry. J Lumin 2017;183:525–32. DOI: https://doi.org/10.1016/j.jlumin.2016.12.001

OLIVEIRA, L.C.; YUKIHARA, E.G.; BAFFA, O. MgO:Li,Ce,Sm as a high sensitive material for Optically Stimulated Luminescence dosimetry. Sci Rep 2016;6:24348. https://doi.org/10.1038/srep24348 DOI: https://doi.org/10.1038/srep24348

LEE, S.Y.; KIM, B.H.; LEE, K.J. An application of artificial neural intelligence for personal dose assessment using a multi-area OSL dosimetry system. Radiat Meas 2001;33:293–304. https://doi.org/10.1016/S1350-4487(00)00147-5. DOI: https://doi.org/10.1016/S1350-4487(00)00147-5

ESME, I.S.I.K.; IBRAHIM, I.S.I.K.; HÜSEYIN, T. Analysis and estimation of fading time from thermoluminescence glow curve by using artificial neural network, Radiation Effects and Defects in Solids, 2021;176:9-10, 765-776, DOI: 10.1080/10420150.2021.1954000 DOI: https://doi.org/10.1080/10420150.2021.1954000

ESPOSITO, M.; GHIRELLI, A.; PINI, S.; ALPI, P.; BARCA, R.; FONDELLI, S.; et al. Clinical implementation of 3D in vivo dosimetry for abdominal and pelvic stereotactic treatments. Radiother Oncol 2021;154:14–20. https://doi.org/10.1016/j.radonc.2020.09.011. DOI: https://doi.org/10.1016/j.radonc.2020.09.011

HAYASHI, H.; KIMOTO, N.; MAEDA, T.; TOMITA, E.; ASAHARA, T.; GOTO, S.; et al. A disposable OSL dosimeter for in vivo measurement of rectum dose during brachytherapy. Med Phys 2021;48:4621–35. https://doi.org/10.1002/MP.14857. DOI: https://doi.org/10.1002/mp.14857

WIPO - World Intellectual Property Organization n.d. https://www.wipo.int/portal/en/ (accessed January 2, 2023).

Welcome to Python.org n.d. https://www.python.org/ (accessed January 2, 2023).

ICRP - International Commission on Radiological Protection . ICRP Publication 109. Ottawa: ICRP, 2009.

Downloads

Published

2023-03-24

Issue

Section

Articles

How to Cite

An overview study on the TL and OSL dosimetry patent processes over time. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 11, n. 01, p. 1–15, 2023. DOI: 10.15392/2319-0612.2023.2107. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2107.. Acesso em: 21 nov. 2024.

Similar Articles

11-20 of 226

You may also start an advanced similarity search for this article.